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Abstract 
Ozone high up in the stratosphere is protective against UV rays, but when it is present 

at ground-level, it is a pollutant that can cause shortness of breath and other respiratory 
health problems. With new federal ozone standards in effect, it is more important than 
ever to understand the causes of ozone in and around San Antonio.  

Ozone is formed when volatile organic hydrocarbons (VOCs) react with the nitrogen 
oxides (NOx, the primary component in smog). A wide variety of VOCs are present in 
the air around cities such as San Antonio; they stem from sources as varied as vehicle 
exhaust, oil and gas extraction, and trees and vegetation. The OH radical, a short-lived 
reactive species, plays a crucial role in ozone photochemistry. In this project, we 
investigate which sources contribute to the OH reactivity in and around San Antonio, and 
in what quantities.  

Raw data from the 2017 San Antonio Field Study (SAFS) is examined and analyzed 
in full to identify characteristic sets of VOCs associated with different source types. 
Positive Matrix Factorization, a mathematical technique, is used to identify and interpret 
co-correlating species among the hundreds of varying signals in the raw high-resolution 
datasets. Computer modeling of air transport identifies the broad land coverage types 
where the measured air originated. An ozone formation computer model, in which 
individual source categories can be turned on, off, or varied, is used to understand how 
each source type contributes to ozone formation in and around San Antonio. 
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Executive Summary 
 
Ozone is formed when NOx and VOCs react in the presence of sunlight. In order to better 
understand ozone formation in the SAFS study area, this project looks at the VOC half of 
the equation. VOCs reacting with OH radical kick off a series of ozone-generating 
reactions. Thus, by tracing, quantifying and apportioning the formation of OH, we can 
better understand and quantify the causes of ozone formation in and around San Antonio. 

We explored and analyzed the entirety of high-resolution datasets from the I-CIMS, 
PTR-ToF and GC-EI-ToF, three instruments that targeted different classes of 
atmospheric compounds. Previous efforts had only skimmed the surface, hand-picking 
species to report. Specifically, this analysis effort had three main priorities: 

• Priority A: “How much do the different source categories contribute to the peak 
concentrations [of ozone] observed?” and “Can contributing source categories be 
identified and quantified from measurement data alone”? 

• Priority B: “Collaborate and share data with other SAFS participants” 
• Priority C: “How much do upwind source categories contribute [to ozone 

formation in San Antonio]” 
 

All three priorities were addressed to varying degrees during this work.  By coupling 
the chemical information into 0D box modelling, Priority A was addressed and partially 
answered, albeit not completely.  During the course of the analysis Aerodyne 
communicated initial results in monthly updates, and has archived the data, fulfilling the 
goal of Priority B.  Finally, by combining Positive Matrix Factorization (described 
below) with atmospheric transport modeling, footprint analysis, and chemical intuition 
Priority C was addressed and largely answered. 

Positive Matrix Factorization, a mathematical technique, was crucial in identifying 
co-varying species among the hundreds of individual high-resolution signals (Figure 1). It 
was also run in a way that combined data from multiple instruments, and yielded 
interpretable factors, like diurnal trends due to isoprene, and location-specific signals due 
to oil and gas impact. This technique results in “factors” with distinctive time trends 
(Figure 1, left), and each factor has a chemical fingerprint (Figure 1, right) made up of 
individual chemical species. Individual chemical species can and do show up in more 
than one factor, which reflects the real complexity of sources in this campaign. For 
example, ethane (5th species from the left, Figure 1) shows up with significant intensity in 
the “oil and gas emissions” factor (blue), in “urban VOC oxidation products” (purple) 
and “anthropogenic (auto) emissions”; it has no contribution or much lower contributions 
to the other factors, particularly the biogenic factors (grey, red).  



 
Figure 1. PMF results of combined datasets, with nominal description of each factor. Left: Individual factor contribution to total 
chemical burden. Right: chemical signature for each factor. The chemical signatures are shown as bar graphs, with each bar 
corresponding to a measured species. TILDAS refers to gas-phase species measured via Tunable Infrared Laser Direct Absorption 
Spectroscopy (with the exception of CO2, which was measured via non-dispersive infrared spectroscopy (NDIR)); PTR refers to 
species measured via Proton Transfer Reaction Time of Flight Mass Spectrometry (PTR-ToF); all other species shown were measured 
via Gas Chromatography Electron Impact Time of Flight Mass Spectrometry (GC-EI-ToF or GC-ToF for short). 



 
One important conclusion of this report is that biogenic sources of VOCs dominate 

OH reactivity in the SAFS study area. This is visible even in the simplest evaluation of 
measured data, shown in Figure 2. In this figure the campaign average concentrations of 
measured species, weighted by the number of carbons, are multiplied by their rate 
constants with OH, and normalized, yielding a ranking of OH reactivity per VOC.  

 
Figure 2. Relative VOC reactivity for selected VOCs.  

 
An additional hypothesis of the original 2017 measurement campaign was that high-

resolution analysis would allow identification of signature compounds linked to a specific 
source. The idea was that VOC intermediates can associate with NOx and leave signature 
compounds that still retain information about the source. Although parent VOC 
measurements are very useful, they do not directly indicate the history of ozone 
formation or its sensitivity to NOx and VOC emissions. Quantification of unique markers 
of oxidation, such as speciated oxygenated VOCs and alkyl nitrates could present an 
intriguing way to apportion ozone formation since they are created at the same time as 
the ozone is being produced.  

The identification of such signature compounds was ultimately not successful, since 
the atmospheric processing results in fragmentation as well as functionalization [Kroll et 
al., 2011]. The fragmentation process masks unique information about the parent’s 
elemental formula. In principle, extensive additional laboratory experiments could guide 
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future field measurements and analysis to experimentally identify additional 
intermediates, or sets of intermediates, for a more direct attribution to sources. 

To get around this lack of identifiable chemical intermediates linked to a specific 
source, a 0D chemical model was used to explicitly track photostationary state OH-
formation and important intermediate radicals for given a set of measured constraints.  
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Introduction 
The Environmental Protection Agency (EPA) designates ozone as a criteria pollutant, 

with new 2015 standards set at 70 ppb (3-year average of the annual 4th maximum 8-hour 
daily maximum). The ozone monitor network in San Antonio indicates that the city is on 
the verge of being out of compliance for federal standards. The EPA monitor at Camp 
Bullis (C58), shows 14 maximum daily 8-hour averages exceeding 70 ppb since 2015. 
These exceed the 70 ppb EPA standard that came into effect in 2015, with enforcement of 
the standard expected to begin soon. The mitigation strategy is likely to involve curtailing 
emissions of ozone-producing volatile organic compounds (VOCs) emitted either in the 
city (for those VOCs that are oxidized rapidly) or further upwind in regions such as the 
Eagle Ford or in the refineries at Corpus Christi. 

 
Figure 3. 1-hour ozone measurements from the Camp Bullis monitoring station are 
shown (pale blue) alongside 8-hour averages (dark blue) and wind direction (purple). 
EPA ozone limits (red) are shown at 80 ppb (solid, current standard) 70 ppb (dotted, 2015 
standard, yet to be enforced). 

Ozone is produced from sunlight, NOx and VOCs. VOCs are emitted from many 
different sources. They can be biogenic in origin, like isoprene and other terpenes; they 
can be oil & gas associated such as propane or various aromatic compounds. Numerous 
other anthropogenic compounds participate in ozone production chemistry.  

During the SAFS field campaign, the Aerodyne Mobile Laboratory was operated at 
various sites between Corpus Christi and San Antonio. The strategy was to move the 
portable supersite to a location that is forecast (based on meteorology) to have needed 
characteristics to meet the science objectives for 1-3 days into the future. Although 
forecast conditions are always changing, the goal was to fully characterize the incoming 
Gulf air: through the refinery complex, as it passes through the Eagle Ford, into, and out 
of San Antonio. With the assistance of collaborators and the TCEQ, specific locations 
and logistics were chosen during the planning stages.  

The Aerodyne Mobile Laboratory (AML) is a well-tested and extremely suitable 
measurement platform for the goals of the proposed study. Previous deployments have 
included measurements in urban polluted areas such as Mexico City during the 2006 
MaxMEX/MILAGRO campaign [Herndon et al., 2008; Wood et al., 2009], the 2009 
Queens, NY, study [Massoli et al., 2012], or for more specific sources such an aircraft 
emissions [Santoni et al., 2011] or oil and gas extraction [Yacovitch et al., 2015]. 
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Research and commercial instruments are installed into the AML to collect data while in 
motion for plume characterization, area mapping or portable deployment for 
photochemistry and transport experiments. Real-time monitoring of both gas-phase and 
particulate species is the key feature of the AML.  

Most instruments proposed for this ozone study, including the TILDAS [McManus et 
al., 2008; Nelson et al., 2006] and the SP-AMS [Onasch et al., 2012], have been 
successfully deployed by Aerodyne researchers and others in numerous field campaigns. 
Further descriptions of the most novel (I-CIMS-HRTOF) and new additions to the 
analytical payload are described below. The instrument manifest includes all of the 
combustion tracers (CO2, CO, NO, NO2, SO2) the light alkanes (CH4, C2H6, C3H8) and 
alkenes (C2H4, C3H6), and oxygenated and aromatic VOCs. The comprehensive table of 
the instrument payload can be found in the final report for AQRP project 17-053 
at: https://herndon.homeunix.net/owncloud/index.php/s/DykTvaXkf8oeHl1 

Reported here are the results of in-depth analysis of field data collected during the 
2017 San Antonio Field Study (SAFS) in order to understand and apportion ozone 
formation in the studied area. 

Reprocessing of the dataset with high-resolution methods allows us to identify 
previously unreported chemical species, while improving detection limits on existing 
results. With high-resolution data in hand, three core analysis pathways are followed that 
directly address the 2018-2019 priority research areas of the Texas Air Quality Research 
Program (AQRP).  

• Priority A: “How much do the different source categories contribute to the peak 
concentrations [of ozone] observed?” and “Can contributing source categories be 
identified and quantified from measurement data alone”? 

• Priority B: “Collaborate and share data with other SAFS participants”) 
• Priority C: “How much do upwind source categories contribute [to ozone 

formation in San Antonio]” 
Photochemical box modeling uses measured VOCs to constrain and understand the 

formation of ozone. Positive Matrix Factorization (PMF) is a mathematical technique that 
groups species with similar sources together, based on their time series. PMF is used to 
identify characteristic source categories, or “factors”, in the data. For example, PMF 
groups VOCs with the same diurnal profile, helping us to assign them as emissions from 
trees (Priority A). HYSPLIT footprint analysis draws borders on a map indicating where 
the sampled airmass likely originated (Priority C), and allows us to divide this footprint 
into categories corresponding to different land-use categories. Finally, experimental data 
is used to constrain and inform a 1-D box model that simulates ozone formation with full 
chemical specificity, allowing us to apportion OH reactivity in the SAFS study area 
(Priority A). Together, this research will allow for a sector-based apportionment of 
OH reactivity in the SAFS area 

This report first outlines the methods used to analyze data from three core high-
resolution (HR) mass-spectrometry-based instruments: Iodide Chemical Ionization Mass 
Spectrometer (I-CIMS), Proton-Transfer Reaction Time-of-Flight Mass Spectrometer 
(PTR-ToF) and Gas-Chromatography Time-of-Flight Mass Spectrometer (GC-ToF). 
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These methods include high-resolution analysis, and PMF. Descriptions of the methods 
used to calculate and analyze back-trajectory simulations are included, as is a description 
of the 0D model framework.  

The Results and Discussion section first delves into an analysis of Species of 
Atmospheric Interest: the three instrumental dataset are querried, with the addition of 
some data from the CAMS station in Floresville, with the aim of identifying co-varying 
species and interpreting their identities or sources. Then, in the section Apportioning 
Ozone to Source Categories, model apportionment results are presented, as are results 
from a airmass source region analysis.  

Deliverables for this project are listed below.  

• Time series of all high-resolution fits (in order of preference: absolute 
calibrated data in ppb when available; estimated calibration factor based 
on chemical identification;[Sekimoto et al., 2017] relative intensities.) 

• Time series data descriptions including calibration factor or scaling factor 
applied. 

• Time series of total OH reactivity (s-1) 
 

Methods 
This section describes relevant methodologies and advances used to produce the 

datasets and conclusions in this report.  
Appendix A: High-Resolution Dataset Description lists and describes the data 

produced as part of this project.  
Appendix B: Audits of Data Quality shows the data quality audit results (10% 

required).  

High-Resolution fitting 

Three of the instruments used to collect data during SAFS relied upon high-resolution 
mass-spectrometry for detection of species of atmospheric interest: PTR-ToF, CIMS and 
GC-ToF. Normally, a curated set of mass windows are fit in order to quantify select 
chemical species. The standard procedure divides the mass spectrum into 1 atomic mass 
unit (amu) sized windows, and integrates all signals within these bounds. As part of this 
analysis project, the full high-resolution mass spectra from each of these three 
instruments was leveraged and analyzed in order to reveal other signals of potential 
atmospheric interest.  

Pseudo-HR strategy 

Traditional approaches to analyzing mass spectral data rely on precise knowledge of 
the chemical formula of a species of interest, and its potential fragmentation products in 
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the instrument. This poses a problem when considering a full high-resolution dataset, 
since it is often possible to resolve several hundred individual signals, some of which 
occur as shoulders on top of larger neighboring peaks. Specifying and identifying every 
peak that needs fitting manually would be much too time consuming. Instead we leverage 
a peak-finding algorithm in the analysis software “TofWare”.  

The peak-finding algorithm was used to supplement the original peak lists manually 
developed during the SAFS campaign; the final peak lists thus consist of a number of 
named ions (i.e. with known chemical formula) plus a large number of unknown ions (i.e. 
with a mass precisely determined by the algorithm, but with no chemical identification). 
We term this peak list “pseudo-HR” since it includes both known and unknown ions.  

 
Figure 4. The Tofware MS peak finder window enables an automated fitting algorithm 
that will fit complex peaks with multiple individual masses. 

Several details are important for ensuring a high-quality pseudo-HR peak list: 
1. Mass calibrations must be properly executed. 
2. Known ions (from previously developed peak lists) should be defined first. 
3. A representative mass spectrum should be chosen 
4. The peak-finding algorithm should be tuned to maximize the goodness-of-fit 

with the minimum number of peaks. 
The reference spectrum chosen was determined by taking the month-long dataset and 

selecting or averaging spectra throughout the entire duration. This is especially important 
for SAFS, where three different locations were sampled, and a range of meteorological 
conditions were encountered.  
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As an example, the figure below shows the representative mass spectrum used to 
determine the pseudo-HR peak list for the PTR-ToF instrument. Every tenth mass 
spectrum was selected and averaged. 

 
Figure 5. Representative mass spectrum used in determining PTR-ToF pseudo-HR peak 
lists. The red trace shows the signal plotting signal intensity versus mass-to-charge 
(m/Q). 

PTR-ToF Ion Identification 

Identification of compounds from the mass spectral data acquired by the Proton 
Transfr Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS or PTR-ToF for 
short) starts with the determination of the elemental composition of the ion, which is 
made possible due the high resolution and mass accuracy of the time-of-flight mass 
spectrometer.  The next step is to determine whether the ion is a protonated molecule 
(MH+) or is a fragmentation product from a larger molecule.  One generally starts with 
the premise that ions are protonated molecules and then evaluates how likely that 
compounds having that elemental composition would be present in the ambient 
atmosphere.  Compilations such as Yuan et al. [2017] present comprehensive discussions 
on the assignment of specific compounds to selected ions and provide the core source for 
the identifications provided within.  It must be recognized that any measurement 
technique based on a single metric, such as ion composition, can never be totally 
definitive.  Over the past several decades the PTR-MS systems have gone through 
numerous intercomparison studies with other established techniques.  These studies have 
provided a sense of validation for what compound/ion pairs can be reliably used for 
quantification.  These validation studies, however, are often source dependent, and the 
end user must remain mindful that signal identities can change depending on the 
sampling environment.   
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Figure 6. Comparison of the PTR-ToF-MS and GC-ToF-MS measurement of isoprene 
during the 2017 SAFS. 

Biogenic emissions, particularly isoprene, are an important contributor to ozone 
formation in the San Antonio region.  The ion, C5H9+, has been assigned as isoprene + 
MBO (methylbutenol) even though the vast majority of the signal originates from 
isoprene.  Both compounds are produced via the photosynthetic pathway, with oak trees 
being the primary source of isoprene and conifers for methylbutenol.  Figure 6 provides a 
side-by-side comparison of the isoprene measurements reported by the PTR-ToF-MS and 
the GC-ToF-MS as well as an estimate of the MBO interference. The PTR-ToF-MS 
measurements have been averaged onto the GC trapping time base so the two 
measurements are directly comparable.  Overall, the two data sets are in reasonable 
agreement with the PTR-ToF-MS measurements being slightly higher (13%).  The MBO 
interference is estimated from a branching ratio determination made on a quadrupole 
PTR-MS instrument operated under the same drift tube reaction chamber conditions 
where it observed that MBO produces twice as much m/z 69 relative to the protonated 
molecule (m/z 87).  Thus the MBO contribution illustrated represents the reported 
C5H11O+ mixing ratio times two.  While there is some contribution of MBO to the 



 21 

isoprene signal it is not judged to be significant.  We note that there are some time 
periods where the PTR-ToF-MS and GC-ToF-MS reported isoprene deviate and have no 
definitive explanation for this.  Both instruments were challenged by elevated operating 
temperatures, and it is plausible that trapping efficiency of isoprene by the GC-ToF-MS 
may have been affected and contributed to the offset.  Nighttime measurements are much 
more uncertain and in the absence of corroborating data (GC-MS) suggest that the C5H9+ 

ion has an interference from another source.  Several compounds such as the 
cyclohexanes [Gueneron et al., 2015] and the sequiterpenes [Kari et al., 2018] are 
reported to produce C5H9+ fragment ions and may be responsible for the elevated signal 
reported as isoprene observed at night. 

Ions that have been assigned names indicate that multiple criteria have been met 
including signal purity, known presence and temporal behavior related to other source 
metrics.   

Appendix A contains a complete listing of the traces reported from the PTR-ToF-MS, 
and descriptions of the basis of their identification.  

GC-ToF Data Processing 

Gas chromatography (GC) is a technique used for the analysis and quantification of 
VOCs. The compounds of interest are injected onto an analytical column and separated 
based on their structure using a temperate gradient. The elution flow is then fed into a 
Time-of-Flight Mass Spectrometer (ToF-MS) for high resolution (HR) detection. 

The HR mass calibration, conducted using typical methods for online techniques, was 
showing severe deviations when applied to the GC data set with the mass accuracy 
diverging to +/- 200 ppm. This is attributed to the combination of two effects 1) the 
temperature ramp that the GC eluent was exposed to before it enters the detector and 2) 
the GC separating common ambient ions used for mass calibration as resolved 
chromatographic peaks. The first effect appears to be an artifact of using ToF-MS as the 
detection method. To separate compounds using GC, the column is heated which causes 
the elution flow temperature to increase throughout the GC cycle. This change in eluent 
temperature correlates with changes in the mass calibration. Physically this can be 
ascribed to the known temperature dependence of the ToF-MS, where thermal expansion 
causes changes to the ion path length. This change in path length then results in mass 
calibration drift. The solution to both of these artifacts was to find ions that are being 
constantly fed into the detector, with sufficient signal, throughout the GC temperature 
ramp. It was found was that there are four classes of ions that can be appropriately 
utilized for HR mass calibration of GC data: 

1) Carrier gas contaminants (e.g. Ar+, CO2+)  
2) GC column bleed (siloxane compounds from the column active phase)  
3) Pulsed compounds from the EI-ToF calibration solution (applied at the 

beginning and end of each chromatogram) 
4) Ions emitted from the EI filament assembly (ReO3+, ReO4+) 

These four categories provide ions that are exposed to the entire GC path and some 
emitted directly inside of the detector. When this method is applied to the data, with 
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averaging every 1.5 minutes, mass accuracy of +/- 10 ppm can generally be achieved 
across the chromatogram (Figure 7). 

 
Figure 7. An example of mass accuracies achieved across a chromatogram using mass 
calibration ions found in the carrier gas and generated by column bleed and the detector 
filament. 

Another instrument function that needed to be accounted for to obtain sufficient HR 
fitting was how turning the EI filament on/off was handled. Turning on/off the filament 
for EI-detection is a common practice used to extend the life of the filament, however, in 
the file this loss of signal (Figure 8) causes the mass calibration to diverge to 
unacceptable mass accuracies. To handle these signal changes, modifications to the HR 
fitting software, Tofware, had to be made. With this new version of the software, GC 
start and end times can be defined by the user, once these parameters are defined the 
mass calibration will only operate within those bounds.  

 
Figure 8. An example of the filament settings during each chromatographic run. The 
filament is turned on (0.3 mA) 5 and 685 s into the chromatogram and off (0 mA) at 675 
and 705 s. The associated behavior of one of the mass calibration ions (Ar+) is shown, 
with the loss of signal seen when the filament is off. 
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HR analysis of GC-TOF data 

The gas chromatography (GC) detector used during the SAFS campaign is a high-
resolution electron impact time of flight (EI-ToF) mass spectrometer, which allows for 
the reprocessing of collected data and conversion from unit-mass resolution (UMR) to 
high-resolution (HR) time series. These HR time series are constructed by fitting a set of 
peaks with a common peak shape to the overall high-resolution mass response.  

An example is shown in Figure 9 for a chromatogram collected during lab testing 
before the SAFS study. In the right panel, a subsection of the total chromatogram is 
shown (565 – 605 sec of elution), with the UMR signal at m/z = 105 shown in red. This 
trace would indicate four significant chromatographic peaks, including 1,2,4-
trimethylbenzene which elutes at retention time 584 sec. This section of data can be 
reprocessed using TofWare mass spectral analysis software, as shown in the left panel. 
The red trace of the total signal at m/z = 105 has a pronounced shoulder on the left side, 
indicating a second ion contribution to the UMR signal. We are able to fit the total signal 
with two ion peaks, C8H9+ (aromatic fragment, exact mass = 105.070) and C7H5O+ 
(oxidized aromatic peak, exact mass = 105.034). The time series for these ions are shown 
in the right panel, as the black (C8H9+) and yellow traces (C7H5O+). We can now see that 
for the elution time at 584 sec, there are actually two contributions to the m/z = 105 
signal, from both 1,2,4-trimethylbenzene and also from benzaldehyde. Both of these 
compounds fragment in the EI ionizer to produce a significant fraction of m/z = 105 ion, 
which would appear as a single peak at the Aerodyne Research, Inc. GC resolution and 
separation method. But by separating these signals with the high-resolution re-analysis, 
we can distinguish these compounds. During the SAFS campaign, we fortuitously ran a 
modified elution method that allowed for the separation of 1,2,4-trimethylbenzene from 
benzaldehyde, as can be seen in Figure 10. Note the later elution time allows for better 
separation of compounds in this volatility range. 

 
Figure 9. Left panel: contributions from individual ions to total UMR signal at m/z = 105. 
Right panel: Example chromatogram during pre-campaign testing showing UMR and 
individual ion chromatographic peaks at retention time = 584 sec. 
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Figure 10. Chromatographic separation during SAFS for same range of compounds 
shown in Figure 9. 

Examples of the re-analysis of the SAFS data with high-resolution mass spectral time 
series are shown in Figure 11, and a more extensive reprocessing is shown in Table 1. For 
the examples shown, we can see that there is good agreement between the high-resolution 
and unit-mass resolution data sets, including for 1,2,4-trimethylbenzene. In all cases 
except m/p-xylenes, the difference in slope between the high-resolution (HR) and unit 
mass resolution (UMR) data is less than the stated uncertainty for the measurement. But 
in all cases, the inter-comparison shows very good linearity (R2 > 0.98) and therefore 
differences in peak area are accounted for in the calibration experiments. 
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Figure 11. Inter-comparison of chromatographic peak areas derived from high-resolution 
(HR) and unit mass resolution (UMR) mass spectral data 
Table 1. Comparison of chromatographic peak areas from HR vs UMR mass spectral 
peak fitting. Values in parentheses are 2σ uncertainties. 

Species Slope  Intercept R2 
CCl4 0.94 (0.02) 0.012 (0.005) 0.983 
i-Pentane 0.95 (0.01) 0.032 (0.012) 0.990 
n-Pentane 1.01 (0.01) 0.081 (0.013) 0.995 
Isoprene 0.95 (0.01) 0.012 (0.013) 0.994 
Benzene 0.93 (0.01) 0.023 (0.008) 0.987 
m/p-Xylenes 0.87 (0.01) 0.019 (0.003) 0.988 
1,2,4-Trimethylbenzene 0.95 (0.01) 0.001 (0.001) 0.993 

 

PMF overview and associated data quality metrics 

PMF is a multivariate factor analysis technique developed by Paatero et al. ([Paatero 
and Tapper, 1994]; [Paatero, 1997]) to solve the bilinear factor model xij = Σpgipfpj + eij 
where xij are the measured values of j species in i samples and P are factors comprised of 
constant source profiles (fj, mass spectra for CIMS data, or concentrations for combined 
dataset analysis) with varying contributions over the time period of the dataset (gi, time 
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series). PMF does not require any a priori assumptions of either mass spectral or time 
profile ([Lanz et al., 2007]; [Ulbrich et al., 2009]). The bilinear PMF model is solved 
using the PMF2 algorithm, which computes the solution by minimizing the summed least 
squares error of the fit weighted with the error estimates of each data point. Solutions are 
also constrained to have non-negative values. The error weighting and non-negativity 
constraint result in more physically meaningful solutions that are easier to interpret 
compared to other receptor models. The PMF analysis yields factors which correspond to 
groups of ions that have similar time trends. The factor mass spectra provide the 
identities of the grouped ions that and the factor time trends provide the contributions of 
each group to the measured signal at any given time point. In this work the results of the 
PMF analysis are used to identify spectral signatures that can be used to follow the 
contributions of different sources and or photochemical processing regimes.  

The PMF2 executable version 4.2 in the robust mode ([Paatero, 1997]) is used 
together with a custom software tool (PMF Evaluation Tool (PET) ([Ulbrich et al., 
2009]) in this analysis. Yan et al. (2016) have recently demonstrated application of PMF 
to unit mass resolution data obtained from a chemical ionization mass spectrometer 
(CIMS) while Massoli et al. (2018) have demonstrated PMF analysis of high-resolution 
CIMS data. This analysis utilizes the methods described in Massoli et al. (2018). The 
analysis is performed on a two-dimensional data matrix consisting of high resolution 
mass spectra (in units of Hz) measured as a function of time. Measured data (from a 
given instrument or from multiple instruments) from all sites are included together to 
yield a data matrix with dimensions of 297 time points and 2218 high resolution ions. 
The error estimates for each mass spectral data point (in Hz) are obtained from the 
calculated Poisson counting error for the measured ion counts. The errors of low S/N ions 
are downweighted according to Ulbrich et al. (2008). The PMF2 algorithm minimizes the 
quantity Q, which is expressed as  

 
where Eij is an element of the residual matrix and σij is the input error for each point. 

In the ideal case, when the fit is of good quality, Eij and σij are approximately equal, 
resulting in an overall ideal Q (Qexp) that is approximately equal to the number of 
elements in the analyzed data matrix. Thus, the scaled residual (Q/Qexp) that is obtained 
during the analysis is monitored in order to assess the quality of the fit. Ideal fits yield 
Q/Qexp values of approximately 1. When the bilinear model is solved for different 
numbers of factors, different Q/Qexp are obtained. 

The “optimal” number of factors needed to solve the PMF problem is determined by 
monitoring  the trend in Q/Qexp with the number of factors.  Figure 12 shows an example 
of this for the PMF analysis that was performed for the I-CIMS dataset from this 
campaign, though this methodology is equally applicable to the combined dataset 
analysis.  The I-CIMS PMF analysis was performed on a mass spectral data matrix that 
consisted of 297 time points and 2218 high resolution ions.  As can be seen in this Figure, 
the Q/Qexp decreases sharply as the first few factors are added, but then plateaus around 
5-7 factors.  The fact that the Q/Qexp plot plateaus at these factor numbers indicates that 
addition of more factors does not improve the fit drastically.  
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Figure 12. The Q/Qexp values observed as a function of number of factors in the PMF 
solution of the I-CIMS data. 

In order to understand the detailed variation in Q/Qexp  of the I-CIMS PMF analysis 
between 5-7 factors,  the difference in Q/Qexp contributions from different high 
resolution ions and  measurement time points is examined as a function of number of 
factors.  Figure 12 shows that clear reductions in Q/Qexp are observed for many ions and 
most time points when PMF solutions with 1-3 factors are compared.  Particularly large 
reductions in Q/Qexp are observed for the ions greater than m/z 500.  The Q/Qexp does 
not drastically change for selected m/z or time points, however, once the 6th and 7th 
factors are added.  Both the 6 and 7 factor solution yield similar total Q/Qexp values and 
have similar distributions of Q/Qexp contributions as a function of m/z and time.  
However, the 7 factor solution separates out two clear factors with daytime and night 
time diurnal cycles that are not separated out clearly in the 6 factor solution.  As 
discussed later in the Results section of this report, the time trends of the two factors, 
their correlations with other measurements, and their signature ions are all interpretable 
in terms of previous laboratory and field studies.  Therefore, based on the low Q/Qexp  
value and the interpretability of the solutions, the 7 factor solution is chosen as the 
“optimal” solution for this problem.   
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Figure 13. Q/Qexp calculated for the sum of all m/zs as a function of  time (top panel); 
Q/Qexp calculated for all time points of the campaign as a function of m/z (bottom 
panel). The different colors correspond to PMF solutions obtained with different numbers 
of factors.   

It is important to note that in Figure 12, the plateau in Q/Qexp values is larger than the 
ideal value of 1.  This could be due to prescribed errors that are too small.  Spot checks 
for several high-resolution ions show that the prescribed errors appropriately capture the 
observed variability during time periods with constant composition, suggesting that the 
input error is reasonable.   
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Figure 14. Scaled Residual of an individual ion. The black trace denotes a gaussian 
distribution width a half width that corresponds to the input error for this ion. 

Another possible source of large Q/Qexp values is large residuals.  Figure 14 shows 
the scaled residual, defined as the fit residual divided by the input error, of a single ion.  
The scaled residuals of this ion fall within a gaussian envelope (black line) with a half-
width that corresponds to the input error for that ion, indicating that the ion is well fit.   
Figure 15 shows the  distribution of the scaled residuals across several ions.  This figure 
shows that the scaled residuals vary significantly between the different ions.  Many ions 
are well fit, but several ions also have large scaled residuals.  Since the ions that have 
higher scaled residuals do not correspond directly to any signature mass spectra measured 
in previous lab or field studies, it is not possible to unambiguously assign their residuals 
to a known source of variability.  We also cannot discount the possibility that large 
residuals arise from a breakdown of the PMF assumption that observed I-CIMS spectral 
variability can be fully accounted for by a linear combination of non-varying, constant 
factor mass spectra.    
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Figure 15. Distribution of scaled residuals across all ions in mass spectrum shows as a 
box and whisker plot.  The bottom panel shows a blowup of a region of the mass 
spectrum shown in the top panel. The black boxes at each ion span the 25th and 75th 
percentiles and the red whiskers connect 2nd to 98th percentiles.   

Methods for PMF analysis on GC-ToF datasets 
Generally, PMF analysis is applied to measurement methods that use real-time 

sampling, where there are variations in signal with time. However, with GC-EI-ToF data 
there is an added time dimension so that within the data set there are 1) variations in mass 
spectral signal with GC retention time and 2) variation in chromatographic peak area with 
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sample time (Figure 16). This added time dimension complicates using PMF analysis for 
chromatography data where, if given the flexibility, PMF would associate a different 
factor for each chromatographic peak.  

 
Figure 16. A visual depiction of the added time dimension, retention time, when applying 
PMF to GC data. 

One way to avoid this complication is to put sections of the chromatogram into bins, 
and let PMF extract factors that describes changes in these bins over retention time 
(Figure 17). This binning technique retains some of the information gained through 
compound retention time, which is a function of compound volatility and functionality, 
while not allowing PMF to give one factor per chromatographic peak. While our goal 
was to apply this binning method to this data set, the intense temperature fluctuations in 
the environment surrounding the GC-EI-ToF caused significant retention time shifts in 
the chromatograms. Because the time shifts are non-linear across the chromatogram, 
where compounds that elute early experience more variability than those that elute later, 
this time shifting cannot be trivially corrected for samples across the campaign. And with 
retention times varying up to 60 s we could not trust that our prescribed bins would 
always be populated with the same chromatrographic peaks.  

 
Figure 17. An example of how bins could be applied to divide chromatograms for PMF 
analysis. 
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Because of these discrepancies between chromatograms we have decided to remove 
the extra time dimension (GC retention time) and avoid issues associated with retention 
time shifting by stringing consecutive chromatograms together (Figure 18). We believe 
that this method will be able to distinguish between groups of compounds (different 
classes of hydrocarbons/oxygenates) and show correlations with time.  

 
Figure 18. A schematic showing sequential chromatograms strung together to remove the 
added (retention) time dimension 

However, another complication associated with GC data is that data collection speeds 
of ~ 5 Hz are required to obtain multiple data points across each chromatrographic peak 
(where peak widths can approach 1 – 2 s). This fast collection creates large data files and 
this file size limits how many chromatograms we can string together. At the moment we 
are able to string together 22 chromatograms (7.3 hours of sample time) while monitoring 
215 masses before the matrix becomes too large for the PMF program to manage.  

Because of these complications from both variations in the GC-ToF data due to 
changes in environmental conditions surrounding the instrument and limitations of the 
PMF program being applied to the large GC-ToF data files it was decided that time was 
better spend conducting traditional GC analysis. Looking ahead, we are seeking solutions 
to some of these issues that have been found by applying PMF to the GC-ToF data set so 
that this type of analysis can be used for future work. To address the file size issue, we 
are pursuing a 64-bit version of the PMF program, this upgrade would allow days of 
chromatograms to be strung together to look for diurnal changes. We have also recently 
become aware of a new auto-shift PMF method that is under development, this pre-
treatment of GC data could potentially resolve the retention time shifting caused by 
changes in temperature surrounding the instrument. 

 

0D Modeling overview and tests 

The Dynamically Simple Model of Atmospheric Chemical Complexity (DSMACC) 
model was designed as a multipurpose chemical mechanism integrator with relevant 
submodules [Emmerson and Evans, 2009]. This model has been chosen for use in 0D 
photochemical simulations. The base GEOS-CHEM chemistry model was supplanted by 
the rebuilding the code to use the explicit Master Chemical Mechanism (MCM) version 
3.3.  

The model is operated in a mode where j(NO2) is constrained to the measured value. 
Quantified j(NO2) data from SAFS has been injected, supplanting the native clear sky 
photolysis rates. All other j values are computed via lookup using best practice to 
compare cross sections in the UV in the NCAR Tropospheric UltraViolet model (TUV).  
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One challenge we encountered was in the intermediate species. We found that as the 
model ran to steady state, the mixing ratios of unmeasured (or unconstrained) compounds 
increased in an unrealistic manner. We have adopted the methods described in Edwards 
et al. [2013], to mitigate the model artifact. Essentially, this works by introducing a 
depositional loss term that is a catch all value with 1/k time constant of 24 hrs for inert 
species and 10 hrs for compounds known to have additional true depositional losses. We 
are pursuing two paths for progress. The first involves running a simple set of constrained 
species to fine tune the model work-flow. The current method of operation involves 
stopping the model every half hour and reasserting the constrained species. The model 
stop/starts are introducing bottlenecks that are being addresses with more optimized code. 
Additionally, the large output files that contain the instantaneous rate computed for every 
reaction in the MCM are discarded until the final pass. 

During model setup, we have identified additional data input needs (e.g. 
concentrations of certain alkanes). Depending on the identity of the desired input species, 
there may be data gaps during the campaign. One potential solution is to determine ratios 
of species of interest versus certain common denominator species that have complete data 
coverage during the campaign. Such denominator species include ethane and carbon 
monoxide. Identifying representative ratios and their typical ranges will allow us to give 
the model reasonable input concentrations, even during periods where data coverage was 
poor. The GC-ToF dataset has been mined to produce select ratios of chemical tracers. 
These ratios are used in the 0D model to ensure realistic defaults are used in the 
simulations.  

Even with this ratio strategy, data coverage, particularly for VOC precursors 
measured by the then-prototype GC-ToF-MS instrument, is not sufficient. Thus, we have 
instead come up with a single synthetic “photochemical day”. This photochemical day is 
based on the high ozone day which occurred on the 13th of May. To fill the gaps in data, 
relationships with other tracer compounds have been used to generate likely mixing 
ratios. Once the model workflow is improved, other days in the project will be run.  

Model spin-up is required in order to come up with realistic concentrations of the 
unmeasured intermediate radicals. To do this the model is run with two separate 
integrators. The higher level integrator is run from Wavemetric’s Igor Pro. This is where 
the measured data is injected into a run file for the DSMACC system, where the intial 
time is stepped backward slightly (e.g. 15 minutes). DSMACC simulates the intermediate 
radicals writing to a concentration file for ten minute steps. Igor captures the output file, 
interpolates all of the species that are not being constrained at the specific time of interest 
and produces a new run file at the next time step. Once the time period selected for 
modeling is covered, igor re-runs the process from the initial time but now uses the 
captured output of the intermediates as initial conditions. In this way, photostationary 
state is more closely approximated by minimizing the amount of time the model can 
produce unrealistic species in the channels where there are no constraints on the products. 
The number of passes that gives a high extent of convergence for OH (see Figure 19) and 
HO2 is 5, however the model runs for 8. 
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Figure 19. Convergence of the photochemical model to a photostationary state is 
observed via the OH radical. 

 At this point, concentrations have stabilized in a reproducible profile for the 
measurements, and the model photochemistry has reached a state where looking at 
intermediates and OH apportionment is meaningful. Figure 20 outlines a wrapper 
algorithm used to initialize and run the 0D model for this purpose. 

 
Initialize: 

write first output file 
copy first file to input queue 

Monitor: 
monitor the output queue 
copy out file to archive 
if( continue ) 

write input file nudging measured values 
drop in input queue 

 
Figure 20. Schematic of the wrapper algorithm used to execute the 0D chemical model 
for a photochemical day.  
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One blind spots in the MCM is RO2. RO2 only exists as a product species and 
internal reactant, and cannot be directly initialized. This means that it necessarily always 
must come up to speed at each run. This is thus the only intermediate that model tracks 
and generates that doesn’t get passed forward. 

Mining the model results for OH apportionment is a complicated venture. Thousands 
of individual chemical reactions produce (or consume) OH, and each reacting VOC is 
accounted for separately. For example, selecting methane as a primary VOC starts as two 
reactions, initial oxidation by atomic chlorine and hydroxyl radical, then quickly 
explodes as the implications of methyl-peroxy radical are filled in. Figure 21 shows the 
numerous resulting chemical equations required.  

 
Figure 21. Methane oxidation in the MCM results in a cascade of photochemical 
reactions.  

The DSMACC model automatically computes the instantaneous rate of all 
expressions in the model into the ‘rates’ file. As a result of this complexity, a parsing 
program has been written in IgorPro to sort through the model output and analyze the 
results.  

Figure 22 illustrates the ranked contribution to OH loss, e.g. OH-reactivity based on 
the entire ensemble of constrained (measured) and unconstrained (modeled 
intermediates). Note that in the detailed oxidation of biogenic isoprene emissions, methyl 
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vinyl ketone (MVK) and methacrolein (MACR) are produced. These in turn produce 
formaldehyde. Formaldehyde is produced via the oxidation of many other VOC 
compounds. In subsequent sections, this model system is used to attribute the source of 
the HCHO using sensitivity analysis. 

 

 
Figure 22. The top ten loss reactions that involve OH for the base model run 5/13/2017 at 

UTSA. HCHO is called out in red. 

Results 

Dataset Descriptions and Ratio Analyses 

PTR-ToF dataset 

In 2017, data from the Proton Transfer Reaction Time of Flight Mass Spectrometer 
(PTR-ToF-MS, or PTR-ToF for short) included ions present in the calibration tanks. By 
analyzing the full 2019 dataset in high resolution, we have produced a number of 
additional time traces.  

High resolution peak extraction analysis of the PTR-ToF-MS mass spectra revealed 
180 unique ions of which 64 are considered to be atmospherically relevant. Ions are 
deemed atmospherically relevant if their intensity was observed to decrease when the 
sample inlet was switched from ambient air to zero air. The response to zero criteria 
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provides a simple but robust method for distinguishing instrumental background ions 
generated from the internal mass calibration standard and the ion source to those formed 
from components in the ambient atmosphere. The chemical compositions were 
determined for all of the 64 atmospherically relevant ions. Thirteen (13) ions have been 
quantified as named species using calibrated sensitivity factors. Thirty-seven (37) ions 
have been given a tentative identification in the form of either a name or source. Fourteen 
(14) ions are referenced as unknown. Appendix A provides a detailed discussion on the 
ion identification. 

The PTR instrument is selective and provides responses to those compounds whose 
proton affinity is greater than that of water, which includes most unsaturated 
hydrocarbons and VOCs containing a heteroatom such as O, N, and S. Alkanes are not 
normally detected with the PTR, but under conditions of high alkane loadings some are 
ionized through reaction with residual O2+ produced within the ion source. The O2+ 
reaction with the alkanes produces many of the same ions as the H3O+ reaction with 
alkenes, which means that there is always an uncertainty associated with the 
identification of the hydrocarbon ions observed. 

Of the 64 atmospherically relevant ions reported 24 are hydrocarbons (CH), 35 
contain C, H and O, 3 contain N, 1 sulfur and 1 chlorine. Figure xx provides an 
illustration of ion distribution as function of carbon number and the number of oxygen 
atoms present. Twenty (20) ions containing 1-O, twelve (12) contained 2-O and three (3) 
contained 3-O. No ions containing more than 3 oxygen atoms were identified.  
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Figure 23. Distribution of identified ions in the PTR-ToF-MS as function of carbon 
number and oxygen content. 

GC-EI-TOF dataset 

Though PMF analysis is used in latter sections as a tool to discern multiple air masses 
observed during the study period, other simpler techniques are valuable to help validate 
the results of the PMF analysis. An example of a simple analysis type relies upon the 
ratio of iso- and n-pentane measured via GC-EI-ToF (gas chromatography electron 
impact ionization time of flight mass spectrometry)  to distinguish between 
anthropogenic emissions typical of cities and from oil and gas activities. This technique 
has been described in the literature and relies upon the difference in ratio of straight-chain 
and branched alkanes found in refined gasoline versus unprocessed condensed liquids 
from oil and gas operations. 
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Figure 24. Observed iso- and n-pentane mixing ratios at various sites in Colorado and 
two cities (Houston, TX and Pasadena, CA).[Gilman et al., 2013] 

We apply this analysis to the gas-chromatograph measurements of iso- and n-
pentane made during Texas AQRP 2017 at the UTSA field site May 13-16 and 
Floresville field site May 18-20. Figure 24(left) shows the time series of observed n-
pentane mixing ratio for the two time periods, color-coded by iso-pentane mixing ratio, 
inside green and blue boxes for UTSA and Floresville, respectively. When we plot these 
mixing ratios against each other (Figure 24, right), we can see distinct and statistically 
significant differences in this ratio, in agreement with the observations by Gilman et al. 
[2013] shown in Figure 2. This indicates that the UTSA site shows iso- to n-pentane 
mixing ratios typical of U.S. cities, while the ratios observed at the Floresville site were 
typical of oil and gas operations. 

 
Figure 25. Left: Isopentane and n-pentane mixing ratios observed during Texas AQRP 
2017. Right: Ratio of iso- to n-pentane mixing ratio for two sampling sites. 
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CAMS data in Floresville 

The mobile lab was stationed at the Floresville AutoGC site from May 17 – May 22, 
2017. Floresville due its proximity to the Eagle Ford oil and gas fields is heavily 
impacted by the emissions from this activity. This is readily apparent in the GC data 
reported by from the Floresville AutoGC facility, where there are numerous episodes 
where large enhancements in major alkane species are observed. Analysis of the AutoGC 
data set for the month of May 2017 shows that most of measured species are highly 
correlated to ethane when its concentration exceeds 20 ppb, as shown in Figure 26 

  
Figure 26. Correlation plots of selected hydrocarbons versus ethane. Data from the 
Floresville AutoGC. 

The strong correlation between the different species under these conditions indicates 
that the episodic events share a common source. While it is intuitive to attribute the 
source of these episodic events to the Eagle Ford, it will be demonstrated that the 
composition of the air under these conditions closely resembles the composition of 
condensate tank emissions. Slopes from correlation plots, such as that shown in Figure 1, 
have been tabulated and were made for most of the reported species. These slopes yield a 
composition for each component scaled to ethane that can be examined to existing 
literature data sets for known sources. For the Floresville ambient air measurements we 
chose to compare them against those for condensate tank and gasoline exhaust emissions. 
This data is provided in the Table shown in Figure 29. 
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Figure 27. Floresville ambient air when experiencing high ethane (>20 ppb) conditions 
has a composition that closely resembles the emissions from condensate tanks. 
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It is instructive to examine whether other reactive alkene species, beyond those 

monitored by the AutoGC (C2-C4 alkenes) are associated with the Eagle Ford plume. 
While H3O+ reacts will all of the alkenes except ethylene, these species typically undergo 
a significant of fragmentation and produce ions predominately at m/z 43, 57, 71 and 85 
depending on the number of carbons in the original molecule. The presence of additional 
alkenes would to lead to enhanced signals in these masses above what is anticipated from 
AutoGC data for the C3 and C4-alkenes. Figure 28 provides time series for the 
aforementioned species along with ethane and CO measurements recorded by Aerodyne. 
As might be expected, there are no significant enhancements for the alkene components. 
The signal containing the propylene response (C3H7+) is general agreement (~ 1% of 
ethane). 

 
Figure 28. PTR-ToF-MS measurements from Floresville of ions produced from alkenes. 
Enhancements correlate with ethane and are in general agreement with what is 
anticipated from AutoGC measurements.  
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Positive Matrix Factorization 

In this section, we report two sets of results that employ the positive matrix 
factorization (PMF) method. This method uses matrix factorization algebra to identify co-
varying factors. A factor is made up of several chemical species or ion signals that all 
vary together. One advantage of this technique is that it is able to separate different time 
trends within the same compounds. This means that a single chemical species or ion can 
be present in multiple factors. This reflects the real complexity of the source environment 
in the SAFS study, where a single chemical tracer can have numerous sources, each with 
a signature variation with time or place.  

PMF of the I-CIMS dataset 

Since the I-CIMS detection scheme is based on the formation of detectable clusters 
between the iodide reagent ion and analyte of interest, it is most sensitive to 
multifunctional highly oxidized organic and inorganic species [Lopez-Hilfiker et al., 
2016]. Thus, the species observed by the I-CIMS are generally secondary in nature, 
though some primary species that are already oxidized, such as nitrophenol from biomass 
burning [Lee et al., 2014] can also be observed. During this work the high-resolution I- 
CIMS mass spectra were fit to 2218 high resolution ions with varying degrees of 
oxidation. PMF was utilized to identify 7 groups of ions that covaried together in time. 
The covariations of the ions within each factor could be due to the fact that they originate 
from similar source regions and/or processing mechanisms. The mass spectra and time 
series of the 7 PMF factors chosen from this analysis are shown below.  

 
Figure 29. Mass spectra for the 7-factor PMF solution. 
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Figure 30. Time trends of the 7 factor PMF solution. Measurement locations are color-
coded, and time periods of interest are labeled.  

Figure 30 shows some clear temporal differences between the factors that are 
indicative of changes in the gas phase species measured by the I- CIMS. For example, 
during the first UTSA time period (UTSA 1), Factor 3 (green traces) shows diurnal peaks 
in the afternoons while Factor 6 (gray traces) shows diurnal peaks at night. Factor 7 (pink 
traces) and Factor 2 (Red) show large episodic peaks during the first UTSA measurement 
time period and during Corpus Christi State Park measurements, respectively. Factor 1 
(black traces) becomes more important at the end of UTSA 1 while Factor 4 (blue traces) 
and Factor 5 (purple traces) are observed in Corpus Christi State Park and the second 
UTSA period (UTSA 2). Temporal correlations of the groups of species linked to each 
factor with external tracers can help in the interpretation of the sources that influence the 
factor. For example, higher temporal correlations of Factor 3 with measurements of 
precursor species such as isoprene and secondary isoprene oxidation species such as 
methacrolein and methyl vinyl ketone suggest that this factor represents species that are 
enhanced in airmasses that are influenced by isoprene sources. On the other hand, factor 
6, which peaks at night in San Antonio, correlates well temporally with measurements of 
C2 and C3 benzenes and terpenes.  

Detailed information on the interpretation of the I-CIMS factors is enabled by the 
identification of source-specific ions that have been observed in previous laboratory and 
field measurements. For this analysis, signature ions in I- CIMS spectra from the 
photooxidation of isoprene, a-pinene, and biomass burning are used [Ehn et al., 2012; 
Gaston et al., 2016; Lee et al., 2014; Lee et al., 2016; Mohr et al., 2013; Murschell et al., 
2017; Schobesberger et al., 2016; Veres et al., 2015]. Results by Bin Yuan et al. during 
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the FIREX campaign are also leveraged, as are recent unpublished I- CIMS 
measurements at Aerodyne of trimethyl benzene (TMB) laboratory photooxidation under 
high-NOx conditions.  

Before matching source signature ions with ions observed in factor mass spectra, a 
pre-selection was performed to identify the most useful and unique signature ions for any 
given factor. This pre-selection was necessary since the signals of most individual ions 
were distributed across multiple factor mass spectra. The ions likely to be most useful as 
signatures for a given factor were identified by examining the correlations between time 
trends of all measured ions every factor. A total of 53, 673, 34, 5, 14, 162, and 937 high 
resolution ions were selected as factor-specific signatures for factors 1 to 7 respectively 
since they showed higher temporal correlation factors (R2 > 0.4). Of these factor-specific 
high-resolution ions, 13, 196, 52, 14, 12, 41, and 477 were found to match the source-
specific signature ions that have been observed in previous work. Figure 31 shows the 
distribution of the signature ions from each factor that match the signature ions for 
isoprene, alpha pinene, biomass burning and photooxidation products of trimethyl 
benzene (TMB) under high-NOx conditions. The panels in the figure are also labeled by 
their temporal behavior as shown in Figure 30. While no individual factor is found to 
uniquely indicate a given source, the distributions vary with the relative importance of 
various source signatures. Factors 1 and 5 contain signature ions from all sources and 
thus appear to reflect mixed source influence. Factors 2 and 4 contain signatures that also 
correspond to all the source-specific spectra. The fact that their time series decay sharply 
at the beginning of each UTSA measurement time period, however, suggest that these 
factors are caused by instrumental artifacts. The only clear unique source-specific 
features are found in Factors 3 and 6,which contain unique marker ions for isoprene and 
a-pinene precursors respectively. The likely source influence for each factor is 
summarized in Table 2. The specific ions corresponding to the source influences that are 
observed during this study are available as a table in Appendix C.  
Table 2. Likely source influences for I-CIMS PMF factors 

  Source Influences 
Factor 1 Mixed Source 
Factor 2 Instrument Artifact 
Factor 3 Isoprene signature 
Factor 4 Mixed Source 
Factor 5 Mixed Source 
Factor 6 a-pinene signatures 
Factor 7 Instrument Artifact 
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Figure 31. Signature ions of each factor categorized according to their match with known 
source-specific ions. 

 

PMF of combined datasets 

PMF was used on the GC-EI-ToF-derived VOC mixing ratio time series for the 
campaign. To expand the number of chemical species input into the analysis, additional 
mixing ratio data from PTR-ToF and gas-phase species (Tunable Infrared Direct Laser 
Absorption Spectroscopy, TILDAS or Non-dispersive infrared, NDIR). All species were 
modeled using their mixing ratio in ppb except CO and CO2, which were used in units of 
ppm and ppth, respectively, to ensure that the absolute numerical variance scaled roughly 
in the same dynamic range as the VOC species. These measurements were averaged to 
the GC data collection start and stop times (5 minutes every 20 minutes). The final list of 
chemical species used, along with their source instrument is shown in Table 3. 
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Table 3. Chemical species used for PMF analysis of time series for SAFS, grouped by 
measurement type. Mixing ratios for all compounds in ppb unless denoted in brackets. 
Species with (*) indicate summed isomers. 

TILDAS 
Species 

GC-EI-TOFMS 
Species 

PTR-TOFMS Species 

CO [ppm] Benzene Isoprene 
Methane Toluene Monoterpenes* 
Ethane Ethylbenzene Methyl vinyl ketone & 

methacrolein* 
Ethyne m&p-Xylenes* Methanol 
Formaldehyde o-Xylene Acetone 
Formic acid 1,2,4-

trimethylbenzene 
Acetaldehyde 

 i-Pentane Hydrogen cyanide 
NDIR Species n-Pentane Acetonitrile 
CO2 [ppth] n-Hexane Dimethyl sulfide 
 n-Octane  
 2,2,4-

trimethylpentane 
 

 Methylcyclopentane  
 Cyclohexane  
 Methylcyclohexane  
 

PMF analysis requires that all species have complete time series with no missing data 
points, so for any GC sample period where any compound had unreported data, the 
sample was removed from the data set for all species. As a result of this, the original time 
series of 541 data points was winnowed down to 194 rows of 33 gas species. PMF 
analysis is highly-sensitive to the uncertainties for all reported species. Here, the data 
uncertainties were defined based simply on the measurement technique rather than on a 
compound-by-compound basis. For GC data, uncertainties were defined as 12% + 0.005 
ppb; for PTR data, 20% + 0.01 ppb and for other measurements, 10% + 0.005 maxing 
ratio unit. 

PMF analysis requires the user to determine the number of factors needed to describe 
the variability in the data, and the modeling software provides diagnostic tools to evaluate 
the results to minimize factors and avoid over-fitting of the data. Figure 32 shows two 
plots of these diagnostics for the VOC dataset described above. The Q-plot (left side) is 
an attempt to estimate the number of degrees of freedom that exist in the dataset, where 
additional factors significantly below Q/Qexpected = 1 likely contribute little. In this case, 
we have selected seven factors, or degrees of freedom. R-R plot (right) compares the 
chemical co-variance of the seven factors with their temporal variance. While we see 
significant chemical co-variance for several factors, they have poor temporal co-variance. 
This is likely due to air masses having similar emission sources but different levels of 
photooxidative processing (see below). 
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Figure 32. PMF diagnostics. Left, Q-plot, showing the enhancement factor (Q/Q 
Expected) for estimate of number of degrees of freedom; Right, R-R plot, comparing 
temporal co-variance vs. chemical co-variance. 

As noted, we found that seven factors provided adequate description of the observed 
VOC atmospheric burden. These factors are shown in Figure 33, with the chemical 
signature of each factor on the right and the individual temporal response of each factor 
in the center. The factors have been given nominal assignments based upon their 
chemical signature, temporal variability and location when observed [Abeleira et al., 
2017]. A brief descriptor of each: 

• Background boundary-layer air: long-lived chemical species (e.g. benzene), a 
small contribution (5-10%) throughout the time period modeled. This represents a 
small fraction of the VOC background consisting of long-lived species that does 
not have a significant diurnal or wind-direction variance. This is typical of 
continental boundary layer air, e.g. Abeleira et al., 2017 

• Biogenic emissions: a mixture of isoprene / monoterpenes and some aromatic 
species, with small contribution except for short time periods (overnight) at 
UTSA. 

• Anthropogenic (auto): pentanes / hexane with some combustion markers (e.g. 
formaldehyde), showed large enhancements during the day at UTSA, typically 
10-30% of VOC burden 

• Oil and gas emissions: alkane / cycloalkane / aromatic signature with little 
oxidized VOC, negligible at UTSA but dominant (up to 80%) at times in 
Floresville. 

• Oxidized urban VOCs (ethane > methane): OVOC dominant signature, with 
ethane contribution larger than scaled methane. This a typical urban oxidation 
signature and contributed 20-40% to the VOC burden at UTSA, and typically 
<20% at Floresville. 

• Oxidized biogenics: OVOC signature with biogenic oxidation markers (MVK, 
MACR, methanol). This was an important contributor to the UTSA VOC burden 
in the afternoons (up to 40%), but had a smaller contribution in Floresville. 

• Oxidized oil and gas VOCs (methane > ethane): OVOC signature similar to 
urban, but with methane signal larger than ethane. This signal had one large event 
at Floresville, contributing about half of the VOC burden. Interestingly, it was a 
non-negligible signal at UTSA, twice observed contributing about 20% of the 
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VOC burden. (First event was 14-May, 18:00-24:00 local time; second event was 
15-May, 19:00-21:00 local time) 

 
Figure 33. PMF results of combined datasets, with nominal description of each factor. 
Left: Individual factor contribution to total chemical burden. Right: chemical signature 
for each factor. The chemical signatures are shown as bar graphs, with each bar 
corresponding to a measured species. TILDAS refers to gas-phase species measured via 
Tunable Infrared Laser Direct Absorption Spectroscopy (with the exception of CO2, 
which was measured via non-dispersive infrared spectroscopy (NDIR)); PTR refers to 
species measured via Proton Transfer Reaction Time of Flight Mass Spectrometry (PTR-
ToF); all other species shown were measured via Gas Chromatography Electron Impact 
Time of Flight Mass Spectrometry (GC-EI-ToF or GC-ToF for short). 

To summarize, we can describe the observed VOC variability as a combination of 
three major emission sources (urban / auto; biogenic; oil and gas) and the oxidation 
products of those sources. This analysis is in good agreement with the PTR-ToF and 
CAMS site Auto-GC analysis presented in previous sections. 

One benefit of PMF analysis that is present in the above results is the ability of this 
methodology to separate contributions of different sources with different time trends to 
the same chemical species. For example, these results aspect  

Back-Trajectory Analysis and Landcover Mapping 

HYSPLIT Back-Trajectory Footprints 

A complete dataset of HYSPLIT back-trajectory footprints has been run on a high-
powered computational computer. These trajectories are run in particle mode to generate 
a probabilistic footprint of the airmass source. This is in contrast to the simpler back-
trajectory mode, which follows only the cloud centroid and results in a trajectory “string” 
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on a map. The particle mode of the model is releasing 100,000+ particles and tracking 
them and allows particles to randomly spill into other grid cells. This analysis leverages 
the best-available meteorological datasets and takes about 30 minutes to complete 1 hour 
of simulated time. The results are output in a format that is accessible in the analysis 
software of choice, Igor Pro, and summary .PNG figures were output for ease of more 
qualitative analysis.  

The full set of hourly back trajectory PNGs are available in the dataset deliverables 
for this project (see also Appendix D). The calculations have also been done for the 
UTSA location for the entire campaign, in order to support other research groups doing 
stationary measurements at this location. A movie of these UTSA back-trajectories, 
which gives an overview of the general wind directions and transport during the 
campaign, can be viewed here:  

https://herndon.homeunix.net/owncloud/index.php/s/peG6fXDR9FQtx5r 
An example of the Hysplit back-trajectory footprint figures is shown below. These 

two simulations show the origin of the airmass sampled during the campaign during an 
hour-long period. The first, on 05/17/2017 shows clear influence from the ocean; the 
second, only a few days later on 05/23/2017, shows more influence from on-land 
surfaces. These two time periods are compared with measured tracers (like ethane and 
pentanes) as well as PMF factor results (which represent groupings of species), to better 
understand potential sources of observed species. 

 
Figure 34. Example of HYSPLIT back-trajectory footprints.  

The results of a test of the release height are depicted in Figure 35. The figure 
suggests that the long-range transport contours are not strongly coupled to the choice of 
release height. In the case of the measurements, the air was sampled at ~10m. The 
convention within the back-trajectory calculation community, 10 meters is considered too 
low to the ground for the model to accurately calculate a footprint. This figure suggests 
that for long-range interpretation of airmass sources, the choice of release height (within 
the bounds explored here) may not matter. Note that the next steps will be to compare the 
actual magnitude of the footprint. In this analysis, owing to the use of a log scale, some 
numerical differences due to the simulated release height will not be discerned. This 
release height insensitivity lends confidence, however, to the planned use of these results 
in this research project: figures such as those below will be used in a qualitative way to 
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look at the geographic area sampled for better understanding of the potential emission 
sources.  

 
Figure 35. Sensitivity of the model release height. The three panels (from left the right) 
are the result of the HYSPLIT model calculation of airmass 'footprint' at 10, 30, 100 
meters respectively. The color scale is a logarithmic representation of likely surface 
sources during the prior three days.  

Combining Hysplit Footprints with Land Use Data 
Ecological mapping information was obtained from the Ecological Mapping Systems 

of Texas database (EMST) published by the Texas Parks & Wildlife Department [Elliott 
et al., 2014]. The data were obtained in raster format at 10m resolution. GIS tools were 
used to resample the dataset onto a 1000 m grid size for loading into the analysis 
software, Igor Pro.  

398 individual vegetation or ground cover classes were coarsely sorted into broad 
categories: urban (0), oak (4), pine (3) and other vegetation (2), using keyword matching 
of the common name (e.g. Bastrop Lost Pines: Loblolly Pine Forest, or Rolling Plains: 
Mixedgrass Prairie, Table 4 below). Land cover types that did not fall into these 
categories were marked as “sparse” (1).  
Table 4. Broad categorization of the EMST dataset [Elliott et al., 2014] classes. 

Keyword Category ID Broad Category 
urban 0 Urban 
barren, sparse, water, playa, dune, etc. 1 Sparse 
herb, grass, swamp, prairie, marsh, 
woodland, shrubland, wood, forest 

2 Other Veg. 

pine 3 Pine 
oak 4 Oak 

 
The ecological data was resampled onto a 0.025 degree grid to match the resolution 

of the Hysplit back-trajectory calculations, and bounded to the area spanning 26 to 32 
latitude by -100 to -94 longitude. The resulting 4-category map is shown in the figure 
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below. The city limits of San Antonio [City of San Antonio, 2019] are outlined in black. 
The urban areas of Austin and Houston are also evident (dark blue spots).  

 
Figure 36. Ecological and oil and gas mapping information is shown gridded onto a 0.025 
x 0.025 decimal degree grid. The city bounds of San Antonio (center left) are outlined in 
black.  

The extent of the Eagle Ford, Barnett and Haynesville Plays were obtained from the 
EIA [U.S. Energy Information Administration, 2016] and gridded onto the same grid. The 
oil and gas play classification was allowed to overlap with other land cover types. 
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Figure 37. Oil and gas mapping information (purple) is shown gridded onto a 0.025 x 
0.025 decimal degree grid overlaying the ecological and land use data. The Eagle Ford 
Shale Play (center left) is shown along with some of the Barnett (top left) and 
Haynesville (top right) plays. The city bounds of San Antonio are outlined in black. 

An overlap analysis was done with results from Hysplit footprint simulations. The 
Hysplit footprint was put onto a log scale and clipped to within bounds to eliminate 
artifacts. The footprint overlap as a function of time is calculated only within the domain 
shown in the figure above. The calculated overlap does not further normalize results, in 
order to faithfully represent the calculated footprints and their log scale intensities, which 
sometimes extend beyond the bounds of the calculated domain. An example overlap 
figure is reproduced below. 
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Figure 38. Example Hysplit overlap figure. The black/red/gold cloud shows the Hysplit 
footprint overlaid upon a map of Texas. 

The overlap as a function of time is shown in the figure below along with a few 
indicative tracers. 

 
Figure 39. Hysplit footprint overlap with 5 different land cover types. Measured isoprene, 
ethane and background carbon monoxide time traces are also shown. Shaded areas 
represent time spent at UTSA (blue), Floresville (green) and Corpus Christi State Park 
(pink). 
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Additional footprint calculations have been done to try to separate the impacts of 
different urban centers on the SAFS dataset. The urban land classification shown above 
was categorized based on rough bounds for a select few cities:  

 
Table 5. Rough city bounds, in decimal degrees, applied to the Urban land cover type 
shown in Figure 37 

City Lat S Lat N Lon W Lon E 
Corpus Christi 27.60 27.90 -97.75 -97.10 
San Antonio 29.25 29.70 -98.80 -98.30 
Houston 29.25 30.00 -96.00 -94.75 
Austin 29.85 30.70 -98.00 -97.40 

 
These data series have been output onto the standard SAFS 1-minute time series.  

• MM_footprint_Urban 
• MM_footprint_Pine 
• MM_footprint_OtherVeg 
• MM_footprint_OilGasPlays 
• MM_footprint_Oak 

 

Source Locations and Measured Airmasses 

A challenge in interpreting results from the SAFS study has been understanding the 
source of the measured airmass. Measurements of wind direction give a simplistic 
understanding of airmass source (e.g. coastal air from the south vs continental air from 
the north). Hysplit simulations, which trace air particles back in time, give a much more 
detailed and quantitative view. Coupling these two-dimensional Hysplit footprint maps 
with maps of Texas land cover allow us to see the different source categories that may be 
influencing measured results. In this analysis, we produced time traces of this overlap 
that can be directly compared to, and correlated with, time traces of various measured 
species.  

An overlap analysis was done with results from Hysplit footprint simulations (see 
Methods section).  
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Figure 40. Oil and gas mapping information (purple) is shown gridded onto a 0.025 x 
0.025 decimal degree grid overlaying the ecological and land use data. The Eagle Ford 
Shale Play (center left) is shown along with some of the Barnett (top left) and 
Haynesville (top right) plays. The city bounds of San Antonio are outlined in black. The 
black/red/gold cloud shows a single Hysplit footprint overlaid upon the map of Texas. 

 
Figure 41. Hysplit footprint overlap with 5 different land cover types. Measured isoprene, 
ethane and background carbon monoxide time traces are also shown. Shaded areas 
represent time spent at UTSA (blue), Floresville (green) and Corpus Christi State Park 
(pink). 
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This analysis results in time traces representing an airmass footprint overlap with 
each of the selected land use types as a function of time (see Figure 41).  

This data shows periods of time with more or less influence from oil and gas regions. 
It also shows relatively little variation in the biogenic signatures (Oak, Pine, Other 
Vegetation) sources with the exception of the time spent in Corpus Christi State Park. 
Measured isoprene shows the strongest enhancements at San Antonio; we attribute this 
enhanced isoprene to the hyper-local sampling environment (nearby oak trees on 
campus). 

Oaks are by far the biggest expected isoprene source. However, isoprene is only 
emitted during the day, with an emission rate sensitive to light and temperature. This 
footprint experiment does not include the impact of the expected diurnal and temperature-
dependent emissions of such biogenic tracers. However, when the SAFS dataset contains 
traces for both solar elevation angle (MM_SEA) and ambient temperature 
(MM_temperatureC). 

Various correlations can be explored using these traces. For example, isoprene is 
plotted against the Oak footprint below, showing poor correlation, likely due to the 
factors described above. On the other hand, ethane can be plotted against the oil and gas 
footprint and shows a much better correlation. Particularly notable is the correlation of 
the urban footprint with background CO concentrations (i.e. with spikes due to local 
traffic and other sources removed). This indicates that background CO is a good tracer 
for impact of urban land cover types on the SAFS measurements.  

 
Figure 42. Overlap footprint plotted versus selected chemical tracer. The Urban footprint 
(black) is plotted against background carbon monoxide (background_CO) showing good 
correlation. The oak footprint (green) is plotted against isoprene, showing poor 
correlation. The oil and gas play footprint (pink) is plotted against ethane (C2H6) showing 
better correlation.  

Given that winds in Texas often originate from the South East, one might ask what 
the potential impact would be of other urban areas on San Antonio’s air. The urban 
footprint overlap was divided into the impacts of four cities, as shown in Figure 43 (see 
Methods for details). This figure shows that measurements in UTSA were strongly 
impacted by the City of San Antonio, as expected, but there were also times when Austin 
(5/13/2017) or even Houston (5/31/2018) had an impact. Corpus Christi has a small 
influence on measurements at all three sites. Winds were only rarely from the SE when 
sampling in Corpus Christi State Park, accounting for the very minor impact of Corpus 
Christi urban areas to the sampled air there. This analysis was done overlapping Hysplit 
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footprints that were clipped and logarithmically scaled in order to eliminate artifacts and 
visually show the full extent of back-trajectories on a map; this same analysis using 
unscaled Hysplit footprints washes out the contributions of other cities and increases the 
contribution of San Antonio itself.  

 
Figure 43. Hysplit footprint overlap with the Urban land cover type, divided into four 
urban areas: Corpus Christi, San Antonio, Austin and Houston. Measured tracers 
including background carbon monoxide, ethane selected larger alkanes are shown. 
Shaded areas represent time spent at UTSA (blue), Floresville (green) and Corpus Christi 
State Park (pink). Larger alkane measurements in Corpus Christi State Park are 
uncalibrated in their response. 

An investigation of chemical tracers is inconclusive as to the impact Corpus Christi or 
the nearby refineries on measurements during SAFS. Figure 43. Shows a selection of 
alkanes plotted along with the urban footprint overlaps. The Corpus Christi footprint 
overlap has approximately equal impact during the first San Antonio period and during 
Floresville measurements (both times when the same column was used and good 
calibrations were available). In contrast, all of the hydrocarbons plotted show increases in 
Floresville. This implies that a unique hydrocarbon characteristic of Corpus Christi 
industrial activities has not been identified in this dataset.  
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Apportioning Ozone to Source Categories 

Concentrations and OH Reactivity 

A simple way of examining the relative importance of VOCs during the SAFS 
campaign is shown in Figure 44 and Figure 45. First, average concentrations of a 
measured species is computed, in parts-per-billion carbon (ppbC). This lends extra 
weight to larger molecules and aims to show VOCs according to their ozone forming 
potential. The normalized fraction of OH reactivity of individual VOCs is computed 
using their weighted concentration and their reaction rate constant with OH: 
kOH*ppbC/sum of kOH*ppbC, where ppbC is campaign averaged concentration 
multiplied by its carbon number.  The top 20 species measured by PTR-ToF are shown 
alongside some key trace gases like formaldehyde (HCHO), methane (CH4), ethane and 
propane. Species that show up high in both graphs will be most important towards ozone 
photochemistry, most notably isoprene and MBO. This simple investigation agrees with 
conclusions from PMF analysis of I-CIMS data and from 0D modeling results. This is a 
simplest way of scaling all of the components based on their reactivity to OH without 
needing to know the actual OH concentration. Adding up all of the fractions yields 1 so 
missing carbon is not included. This analysis includes all of the data and so doesn’t 
reflect changes with sampling location or differences between daytime/nighttime 
photochemistry.  

 
Figure 44. VOC burden for selected VOCs. 
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Figure 45. Relative VOC reactivity for selected VOCs.  

Photochemical Modeling to Apportion OH reactivity 

There are two main types of results that come from the 0D photochemical model. 
First, mixing ratios of various species can be determined. They can either be constrained 
by measurements (as in the CO result in Figure 46) or left unconstrained (for unmeasured 
species, or for model benchmarking). The concentration of OH radical is the primary 
time trace of interest from the 0D model.  
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Figure 46. 0D model CO results versus measurements for a representative photochemical 
day in at UTSA.   

The second type of result enabled by photochemical modeling is a breakout of the 
various species reacting with OH radical and contributing to the formation of ozone. The 
model, using the thousands of individual reactions included in the framework, can keep 
track of each OH radical formed, and the reacting parent VOC. The VOCs are grouped 
into source categories to produce pie charts of reactivity.  

Figure 47 shows one such pie chart, apportioning OH reactivity at UTSA to 
categories like carbonyls (formaldehyde - HCHO and acetaldehyde - CH3CHO), 
intermediates from isoprene oxidation (methylvinylketone - MVK, and methacrolein - 
MACR). This figure shows that biogenics dominate OH reactivity at UTSA on the 
modeled days (5/12 – 5/14 2017), since a significant portion of the carbonyls are 
expected to be due to isoprene. An alternate view of this graph, with quantified OH 
reactivities, is shown below.  
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Figure 47. Apportionment of OH reactivity for a representative photochemical day at 
UTSA on 5/12-5/14 2017 (wind from the North). The pie chart shows contributions to 
OH reactivity from select VOC source categories. Categories include carbonyls 
(formaldehyde, HCHO and acetaldehyde, CH3CHO), intermediates from isoprene 
oxidation (methylvinylketone, MVK, and methacrolein (MACR)). 

 
Figure 48. These two pie charts group the OH reactivity shown in Figure 47 into coarser 
and coarser source categories. The coarsest categories are chosen to match those listed by 
Anderson et al. [2019]. 
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Figure 49. Initial Igor/DSMACC model result. Photostationary local noon on 5/13 

Figure 49 above shows how important certain carbonyls like formaldehyde are to the 
total OH reactivity. Unlike MVK and MACR, which are predominantly biogenic, 
formaldehyde is formed via numerous different pathways. Thus, additional modeling 
work is required to further apportion formaldehyde to source categories. One such 
technique would involve nudging the modeled input of isoprene (biogenic) or toluene 
(urban/oil and gas) and observing the change in formaldehyde. This type of work is 
essentially a sensitivity analysis and allows additional apportionment beyond what the 
chemically explicit model can provide.  

The result shown above is known to underestimate the total reactivity for a few 
reasons. First, the modeled mixing ratios of MVK + MACR have not been constrained to 
their measured values, which are approximately double the modeled values. Furthermore, 
longer chain alkanes (C4 and longer) have not been input. Both these additions would 
increase the total size of the “pie”. 

Despite the shortfalls, this apportionment result agrees favorably with results 
calculated by Anderson et al. [2019] using entirely different model framework. The 
model mechanics developed as part of this project will be able to contribute significantly 
to the understanding of OH reactivity, particularly as it relates to carbonyls.  
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A second set of 0D calculations were done at the Floresville measurement location 
using the same methodology. A comparison of these two locations is shown in Figure 50 
below. The two bars are the contribution to OH reactivity by species or compound class 
for the measurements at Floresville and the UTSA sites on the photochemical days 
5/18/2017 and 5/13/2017, respectively.  The full model state at photo-stationary state at 
1700 UTC for each location was parsed according to the top 22 contributions. In the case 
of the first-generation isoprene oxidation compounds, their contribution was combined 
for clarity. 

 
Figure 50. Relative contribution to OH loss by compound class. Classes include carbon 
monoxide (CO), formaldehyde (HCHO), acetaldehyde (CH3CHO), isoprene and its 
products, propane (C3H8) and methane (CH4), in addition to several ozone (O3), NOx and 
HOx-related classes.  

This graph shows several important differences between the two sites. First, the rate 
of OH formation (d[OH]/dt) at UTSA is ~ 32% greater than in Floresville, with the 
difference attributed primarily to formaldehyde (HCHO) and isoprene products. Second, 
propane, an oil and gas product, is detectable at Floresville, but is still minor relative to 
isoprene. Finally, though isoprene itself was greater in Floresville, the oxidation products 
and some contribution from formaldehyde suggest that the biogenic influence on OH-
reactivity is strong at both locations. 
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Formaldehyde Sensitivity Analysis 

One challenge with interpreting the model results is the dominance of formaldehyde 
(HCHO) in the apportionment results; HCHO is a product of numerous reaction channels 
from source VOCs from different source classes.  

Here, we present preliminary results probing the sensitivity of the photochemical 
model’s HCHO during peak photochemical hours at UTSA. In this analysis, the model is 
allowed to converged. Then, the converged atmospheric composition is used to re-
initialize the model for a run at a peak photochemical hour (after noon), taking species x 
(e.g. C5H8, isoprene) as-is (sensitivity of 1.00), then altering species x concentration 
slightly (e.g. 95% of that value for a sensitivity of 0.95), etc. HCHO concentrations are 
not constrained during this process. The resulting HCHO is tabulated, leading to a 
sensitivity graph as shown below: 

 

 
Figure 51. Formaldehyde (HCHO) sensitivity analysis for the UTSA 5/13 modeled 
photochemical day at peak photochemical times. The dependency on isoprene (C5H8), 
acetaldehyde (CH3CHO), ethane (C2H6) and toluene are shown.  

Note that above, the ethane and toluene sensitivities are nearly flat. In fact, their 
response is slightly negative. The reason is that this analysis was conducted for peak 
photochemical times. At these times, the radical intermediates generated from ethane and 
toluene aren’t leading to formaldehyde quickly. Isoprene, on the other hand, generates 
HCHO quickly and this is apparent in the sensitivity analysis. 
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Discussion 
A challenge in interpreting any atmospheric data is that it provides an incomplete 

window into the total chemical content of the atmosphere.  Recent advances in mass 
spectrometry (i.e. HR TOF coupled to chemical ionization) have afforded more complete 
pictures of this chemical profile.  Nonetheless, in this case the analysis was challenged by 
the lack of observed atmospherically processed chemical intermediates that could be 
linked to a single source category. Notably, no clear nitrogen-containing intermediate 
was found in the I-CIMS dataset that could be uniquely identified to a single source 
category such as oil and gas.  

One thing that has become apparent in the high-resolution analysis of the I-CIMS 
dataset is the dominance of oxygenated products. While the I-CIMS detection scheme 
provides elemental formulas for individual chemical species, identification of the precise 
source that produced the detected species can be complicated because the same elemental 
formula can correspond to multiple structural isomers. Identification of the precise 
precursors that produced the oxidized products detected with the I-CIMS can also be 
complicated by the fact that oxidation processes result in fragmentation as well as 
functionalization [Kroll et al., 2011]. The fragmentation process masks unique 
information about the parent’s elemental formula since it produces molecular species that 
have smaller carbon skeletons than the original precursor. In recent laboratory 
experiments at Aerodyne, for example, we have studied the I-CIMS spectra obtained 
from the photooxidation of several aromatic precursors including 1,3,5-trimethyl 
benzene, 1,2,4-trimethyl benzene, 1-methyl naphthalene, propyl benzene and isopropyl 
benzene. Preliminary analysis indicates that many of the products formed from these 
different precursors result from fragmentation. These fragmentation products from the 
different precursors are observed to have identical elemental formulas. Fragmentation of 
the aromatic ring in these precursors also results in several small non-aromatic products 
that are also common to the oxidation of isoprene and terpenes as well. In this way, 
fragmentation can lead to confounding signals that are difficult to interpret without an 
understanding of oxidation and fragmentation pathways. 

To get around these difficulties, the PMF analysis of the I-CIMS dataset leveraged 
laboratory and field experiments under known and controlled conditions to identify what 
we should expect to see in the mass spectrum when we are sampling aromatic oxidation 
or biomass burning, for example. This analysis was able to identify two clear biogenic 
signatures (isoprene and a-pinene oxidation), but the anthropogenic or oil and gas sources 
could not be conclusively identified, and they are identified as “mixed sources”.  

Conversely, PMF analysis leveraging directly emitted species (as measured by the 
gas-phase instrumentation and the GC-ToF) better addresses these non-biogenic source 
categories. In this combined instrument analysis, the ratios of chemical species in the 
PMF-derived factors was used to identify factors associated with anthropogenic and oil 
and gas activities. This analysis succeeds in identifying the impact of these sources on the 
measured airmass, but does not directly address ozone formation. Notably, the insights 
obtained here are therefore the consequence of using multiple sampling techniques – 
chemical ionization, gas chromatography, and precision laser-based methods – to provide 
a more complete picture of the relevant sources. 
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Ultimately, ozone formation in the San Antonio study area is best understood through 
the photochemical box modeling approach. The OH radical is a key intermediate in the 
set of equations that dictate ozone formation. Since the OH radical is not a measured 
species, it is modeled. In doing this modeling, we take care to track each individual OH 
radical formed, and its source VOC. This modeling supports the conclusion that biogenic 
emissions are crucial in explaining ozone formation in San Antonio.  

This modeling has also revealed the importance of carbonyls such as formaldehyde 
(HCHO) in ozone formation chemistry. HCHO presents a challenge in interpreting OH 
reactivity pie charts because it is produced via numerous chemical pathways with 
different types of source VOCs. The HCHO sensitivity analysis that we conducted shows, 
again, the dominance of biogenic species such as isoprene at the UTSA site at peak 
photochemical times (mid-day). In this case, small changes in isoprene have a strong 
impact on the resulting HCHO. Other species like toluene or ethane, which can also 
produce HCHO, have nearly no impact.  

Importantly, the box modeling approach used here is a 0D chemically explicit 
approach – this means that we are examining the results of a steady-state atmosphere with 
full chemical specificity. However, this approach does not couple to atmospheric 
transport or emissions models. A separate investigation on airmass sources was done for 
this campaign using the results from Hysplit back-trajectory analyses. Land-cover was 
incorporated into this investigation in order to estimate the time periods in the campaign 
that were most likely to be influenced by air originating from nearby oil and gas plays, 
from biogenic sources, or from upwind cities like Corpus Christi. These efforts revealed 
instances in which biogenic emissions contributed to the measured airmass, but did not 
fully account for biogenic impact at UTSA, highlighting the impact of the hyper-local 
sampling environment (oak trees on campus) at the UTSA site. 

Conclusions 
Ozone is formed when NOx and VOCs react in the presence of sunlight. In order to 

better understand ozone formation in the SAFS study area, this project looks at the VOC 
half of the equation. VOCs reacting with OH radical kick off the canonical series of 
ozone-generating reactions. Thus, by tracing, quantifying and apportioning the formation 
of OH, we can better understand and quantify the causes of ozone formation in and 
around San Antonio. 

We explored and analyzed the entirety of high-resolution datasets from the I-CIMS, 
PTR-ToF and GC-EI-ToF, three instruments that targeted different classes of 
atmospheric compounds. Previous efforts had only skimmed the surface, hand-picking 
species to report.  

Positive Matrix Factorization, a mathematical technique, was crucial in identifying 
co-varying species among the hundreds of individual high-resolution signals. It was also 
run in a way that combined data from multiple instruments, and yielded interpretable 
factors, like diurnal trends due to isoprene, and location-specific signals due to oil and 
gas impact. 
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One challenge in interpreting the data was the lack of atmospherically processed 
chemical intermediates that could be linked to a single source category. To get around 
this fact, a 0D chemical model was used to track OH formation given a set of measured 
constraints. 

The main conclusion of this report is that biogenic sources of VOCs dominate OH 
reactivity in the SAFS study area.  

Recommendations for Future Work 
Results presented within this report motivate a number of additional research 

avenues.  
First, additional investigation is warranted on emissions in the SAFS study area of 

biogenic ozone precursors like isoprene. Such research might include work on emissions 
inventories, which could be coupled to the spatial distribution of sources and their impact 
on various downwind areas (perhaps similar to the coupled Hysplit and land use work 
presented here). 

Second, the use of multiple high-resolution mass-spectrometer based instrumentation 
provides a superior level of detail on the composition of the atmosphere. However, this 
amount of data comes at a cost, since manual identification and calibration of individual 
time traces is time consuming and borderline impossible for some of the larger datasets. 
Instead, use of methodologies that examine correlations amid the entire mass spectrum 
(PMF, R2 plots) should be used early in the process to identify which high-resolution 
traces are of greatest interest.  

On a practical side, SAFS measurements at three distinct locations, each conducted 
for enough time to experience variations in meteorology, was crucial in many of the 
conclusions presented here. Colocation with the AutoGC in Floresville presented an 
excellent opportunity for data validation and intercomparison. Future measurement 
campaigns should consider this strategy. 

Gaps in measured results due to instrumental problems presented challenges when 
using SAFS data in modeling. Efforts to maximize data coverage for all instruments are 
warranted in future campaigns, as are efforts to determine reasonable default 
concentrations for the study area for each reported species.  

Finally, an analysis of potential ozone mitigation strategies for the SAFS study area is 
warranted, underpinned by the scientific results presented here, but including policy and 
economic considerations unique to the San Antonio area.  
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Appendix A: High-Resolution Dataset 

Description 
High-Resolution Fits: New primary data (time-series from high-resolution fits) that 

will be produced as part of this project are described in this appendix, to accompany the 
final data deliverable.  

The data description includes, if relevant, the following items: instrument that 
collected the data, units, reason for any missing data, how the data was analyzed (high-
resolution fit,), calibration factor or response factor applied, and source of the factor 
(measured cal tank, literature reaction rate, etc.), interferences identified, eliminated, or 
suspected, and uncertainty (see descriptive statistics below).  

Uncertainty (precision) will be reported at the one sigma level for each of the various 
time series generated as a result of the high-resolution fits. Such statistics will be 
preferentially determined using segments of data when concentrations are low and stable, 
or, when the instrument was sampling from a stable source such as a zero-air tank or 
calibration cylinder. When comparable data is available (e.g. from TCEQ monitoring 
sites) it will further be used to assess accuracy and correct any bias of the data.  

The total systematic uncertainty at 95% confidence limits will be the combination of 
the uncertainty and the uncertainty of the calibration standard used in-field, pre- and post- 
campaign. All errors will be accounted for and estimated. 
 

Calculated sensitivities and uncertainties for the GC-TOF-MS 

instrument during 2017 Texas AQRP 

Introduction 

Instrument sensitivity for the Aerodyne Research, Inc. GC-TOF-MS is determined in 
a two-step process. First, instrument response is normalized on a per-chromatogram 
basis, using the measurement of CCl4, a halocarbon with invariant tropospheric mixing 
ratio on the time-scale of the SAFS campaign. Instrument sensitivities are then 
determined as normalized counts, based upon instrument response to calibration 
standards routinely measured throughout the sample period.  

A calibration scheme using three methods was designed for Texas AQRP: 
1. Frequent (twice daily) in-field measurement of a custom-blended field standard 

(Cylinder CC358900), a diluted natural gas standard (Restek natural gas standard 
#2, p/n 34439). This serves to provide a single-point measure of instrument 
response, as well as allow for retention-time characterization. Uncertanties of 
compound mixing ratios for this tank were 7-12%. 
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2. Bi-weekly In-field multi-point calibration of Instrument response to PTR-TOF 
calibration standard (Cylinder CC428331, Apel-Riemer Environmental, Inc.), 
uncertainties 5%, diluted in zero air via two mass flow controllers and added to 
the sample inlet in excess. Total uncertainty for this method is geometric sum of 
5% (tank) + 2% (MFC #10 + 2% (MFC #2) = 6%. 

3. Post-campaign measurement of the transfer standard (CC358900) used in (1), at 
various lengths of time flowing the standard through the sample trap (1-5 
minutes) to generate a multi-point calibration. 

Additionally, the instrument was co-located with a TCEQ AutoGC instrument during 
the active sampling period in Floresville, TX. This allows for inter-comparison of 
observed mixing ratios for a subset of reported species, albeit with disparate sample 
periods. 

Field Results 

The instrument was operated with two (2) sample traps during the campaign, 
therefore calibrations are required for both traps. The first trap was pulled from the 
instrument at the mid-point of the campaign (19-May) to preserve it for post-campaign 
calibration. The second trap was installed on 19-May, showed very poor sensitivity to 
lower volatility compounds and then failed – lost adsorbent packing – on 26-May. The 
GC sample path was determined to be contaminated with the adsorbent, at which point it 
was pulled from operation for the remainder of the campaign. Post-campaign work was 
completed with the first sample trap (operated 12-May to 19-May) only. 

The instrument showed a strong overall response variance that was dependent upon 
trailer temperature (Figure 1, left panel). We used CCl4 response (since CCl4 is effective 
constant in the air – sampled during SAFS) as a scale factor to correct for this sensitivity 
change. To scale instrument response, we used an arbitrary raw response of 0.39 mV-sec. 
The scaling factor for any chromatogram is simply calculated as the ratio of CCl4 raw 
response to 0.39 (Figure 1, right panel). All other integrated peak areas are divided by the 
scaling factor to correct instrument sensitivity. When CCl4 is not present in a sample at 
ambient mixing ratio, i.e. a calibration point, we interpolate the scale factor from ambient 
measurements before and after the calibration sample. The scaling factor for the GC was 
determined for both sample traps across the entire field campaign, through 26-May. 
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Figure S1. GC Scaling Factor. 

Single-point field calibration 

These measurements did not serve as valid calibration tests, due to differences in 
sample pressure between the calibration samples and ambient samples. The sample 
trap was exposed to variable super-ambient pressure from the calibration gas flow.  

The data from these calibration points were valuable as retention time markers, 
especially with the severe time-shifting experienced due to the wide range of trailer 
temperatures during Texas AQRP. 

The instrument flow-path was revised to allow for inlet overflow (at the 
instrument inlet) to allow for these calibrations to become quantitative (hopefully). 

Multi-point field calibration 

Calibrations were performed on the VOC sample inlet (shared by the PTR-TOF and 
GC-TOF) at irregular intervals throughout the campaign. The calibrant (CC428331) 
consists of the following components (all at ±5% uncertainty): 
Table S1. VOC calibration tank CC428331 composition. 

Species Mixing 
Ratio 
(ppbv) 

Acetaldehyde  53 
Methanol  495 
Acetone  504 
Acetonitrile  498 
Benzene  502 
Toluene  494 
p-Xylene  491 
1,2,4-Trimethylbenzene  470 
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Note that the last 4 compounds on the list – in bold – are the only species that were 
actually identified for reporting by the GC-TOF. The GC sampling system was designed 
for hydrocarbon analysis only for this campaign. 

 
Calibrations were performed at the following times, typically via standard addition of 

cal gas into 4500 sccm zero air. Total inlet intake flow was 4000 sccm for the campaign. 
All flows were controlled via MFC (calibrated at the start of the campaign by B. 
Knighton, U. Montana). 

 
Calibrations occurred on the following dates / times: 

13-May: 1450 – 1610 UTC 
15-May: 1420 – 1540 
15-May: 2220 – 2240 
19-May: 1700 – 1820 
22-May: 1950 – 2050 (First multi-point cal on second trap) 
23-May: 1510 – 1550 
25-May: 1400 – 1440  

 
These calibrations provide four measures of the instrument response for the first 

sample trap, and 3 measures for the second trap. The results of these calibrations are 
shown in Figure 2. Also shows in the panels for benzene, toluene and p-xylene from the 
post-campaign calibrations, discussed below. 
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Figure S2. GC Column calibrations 

 

Post-campaign calibrations 

 
Post-campaign calibrations were performed on the first sample trap via the dilute 

natural gas standard (cylinder CC358900) (see Table 1 below). An example of the results 
of these calibrations is in Figure 3, which shows calibrations over two days at multiple 
standard additions. 
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Figure S3. Benzene and toluene calibrations post-campaign 

 
Results from the set of calibrations are shown in Table S2 below. In this case, the 

uncertainty refers to error of the linear fit of the normalized calibration points versus 
mixing ratio. We estimate LOD by using the nominal minimum detectable signal for the 
TOF multiplied by three = 0.005 normalized counts. To estimate the total uncertainty for 
the campaign, we include the uncertainties of the calibration tank mixtures (described 
above) and the difference in lab and field sensitivity when available. 

 
Table S2. Species mixing ratio for calibration cylinder CC358900. Post-campaign 
measured instrument sensitivity and uncertainty for each species, in units of ppb / norm 
counts. LOD is determined using 0.005 norm counts (see text). Total uncertainty includes 
additional estimates of error. 

Compound Mixing 
Ratio 

Sens Unc 
LOD 

Total 
Unc 

Pentane, iso- 102 ppb 1.68 0.07 0.003 10% 
Pentane, n- 102 2.96 0.09 0.002 11% 
Hexane, n- 21.4 2.06 0.05 0.002 9% 
Hexane, 2-methyl- 1.57 6.3 0.18 0.001 19% 
Heptane, n- 4.99 1.56 0.04 0.010 8% 
Octane, n- 0.59 0.82 0.04 0.006 8% 
Pentane, 2,2,4-trimethyl 0.22 4.54 0.15 0.001 17% 
Cyclopentane, methyl- 3.56 2.59 0.09 0.002 11% 
Cyclohexane 2.95 1.13 0.03 0.004 8% 
Cyclohexane, methyl- 0.60 1.97 0.06 0.003 9% 
Benzene 1.19 5.96 0.21 0.001 22% 
Toluene 0.85 4.52 0.21 0.001 22% 
Ethylbenzene 0.14 2.61 0.19 0.002 20% 
Xylenes, m- and p- 0.25 2.29 0.19 0.002 20% 
Xylene, o- 0.08 0.82 0.06 0.006 9% 
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Isoprene sensitivity  

No isoprene calibration standard was available during the Texas AQRP campaign, or 
immediately before or after. We were able to obtain a multi-component gas standard in 
December-2017 from Apel-Riemer Environmental, with 15 components at nominal 1 
ppm mixing ratio and actual concentrations certified to 5% uncertainty. This standard 
includes 5 compounds also quantified in the GC natural gas calibration standard, 
allowing for overlap comparison between the standards.  

In Jan to March, 2018, the Aerodyne Research, Inc. GC-EI-TOFMS was deployed to 
the MIT environmental chamber as a part of the Total-C oxidation experiment. We took 
this opportunity to run a set of calibrations with both gas standards on the GC system. It 
is worth noting here that GC sensitivity can vary due to differences in the detector 
sensitivity, which is dependent upon filament excitation current and MCP voltage (and 
other variables). Since filament and MCP setting were changed during the MIT 
experiment, we typically ran a cal at the start and end of each day, using the NG standard 
for a full 5-minute sample, and a cal daily during Texas. 

First, the natural gas standard was used to demonstrate linearity and establish relative 
sensitivities. The following day, we ran a second set of calibrations with the Apel-Riemer 
standard. The detector MCP voltage was increased after the first day, and the instrument 
sensitivity was found to have increase by 45% (on average). The signal from the first day 
was therefore multiplied by a factor of 1.45 to allow inter-comparison between the tanks. 
Note that calibration via the NG standard is performed by varying the sample collection 
time (1-5 min) while the A-R standard mixing ratio was changed via dilution (cal MFC 
setting) and collected for the full 5 min. These results indicate that these methods agree 
well, and we could extend dilution dynamic range by combining these methods. 

 
Figure S4. Example (n-hexane) 

These plots show the comparison between the NG standard (labeled “Texas” here) 
calibration, using a 1.45x multiplication factor, and the Apel-Riemer tank (labeled “New 
PTR”) without a multiplication factor. Both experiments show very good linearity over 
the decadal range, as expected. The sensitivities agree within 3%, well within the overall 
uncertainty for the tanks. 
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We performed this inter-comparison with other species common to both tanks; 
unfortunately, only n-hexane allows for overlapping measured mixing ratios. 

Examples: 

 
Figure S5. Example (cyclohexane and benzene) 

Here, the color scheme is the same as above (red = NG; blue = A-R). Again, the 
signal is linear, now extended multiple decades of mixing ratio. Again, the sensitivities 
agree within 3% or better.  

To extrapolate between the experiments at MIT and the field data collected during 
2017 Texas AQRP, we need to compare the relative sensitivities measured. This was 
performed for 6 species (iso-pentane, n-pentane, n-hexane, methylcyclopentane, 
cyclohexane, benzene): 

 
Figure S6. Comparison between experiments at MIT and field data during SAFS 

This inter-comparison is not very satisfactory, as we see significant variance between 
species. Markers are color-coded by retention time (compounds were ordered by RT 
above), and this doesn’t seem to be a significant cause of the variance. It is worth noting 
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that the sample trap was operated at 30°C during Texas AQRP but at 15°C during the 
MIT study. It is not known how this effects the various sensitivities but could account for 
the differences observed here.  

The GC sensitivity to isoprene was measured as per the other species discussed above 
via the A-R cal standard: 

 
Figure S7. GC sensitivity to isoprene 

Since we have no a priori sensitivity estimate for isoprene, the total uncertainty for 
extrapolating from MIT to Texas will be estimated from the average difference shown in 
the figure above (0.10 / 0.34 = 30%), and the factor used will be 0.36 (between the fitted 
line and the average value). Uncertainty is the geometric sum of uncertainties of the cal 
mixing ratio, tank uncertainty, linear fit and conversion factor (5%, 5%, 2%, 29%), which 
is 31%. This yields a sensitivity of 1.76 (0.55) counts / ppbv. This is the sensitivity used 
for the 2017 Texas AQRP isoprene mixing ratios reported. Using the standard resolvable 
peak height of 0.005 counts, this yields a LOD of 3 pptv. 
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GC-ToF Intercomparisons with other datasets 

 
Figure S8. Comparison of GC-ToF, PTR-ToF and TCEQ AutoGC measurements of 
Benzene. 

 
Figure S9. Comparison of GC-ToF, PTR-ToF and TCEQ AutoGC measurements of 
Toluene. 
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PTR-ToF-MS Operation and calibration 

The PTR-ToF-MS instrument utilized in the SAFS study was an instrument on loan 
from Environment Canada and was operated using the recommended parameters 
provided in Table S3 

Table S3. PTR-ToF-MS Instrument Parameters 

Parameter Value 
Drift Tube Pressure 2.15 mbar 
Drift Tube Temperature 60 oC 
E/N 141 Td 
Inlet flow into PTR 145 sccm 

 
The PTR-ToF-MS subsampled 2 slpm of air from the main inlet whose total flow was 

10 slpm. A 3-way solenoid valve was controlled to allow the instrument to sample 
ambient air for 55 minutes and switch to VOC free air processed by passing ambient air 
through a heated platinum catalyst for 5 minutes. Concentrations derived from the PTR-
ToF-MS are deduced from the difference between the ion intensities measured from the 
ambient samples and those obtained from VOC free processed air. On one occasion from 
20:00 5/17/17 – 14:00 5/19/17 the 3-way solenoid valve program was not activated and 
no VOC free background measurements were performed. This event coupled with the 
discovery that there was a small vacuum leak in the PTR-ToF-MS sample inlet interface 
at the end of project has significant consequences on some of the measured species 
during aforementioned time period. At night when the Aerodyne Mini-Mobile vehicle 
doors were closed fumes from the on-board generator fuel tank would build up leading to 
enhanced signals associated with ions associated with gasoline fuel components. For 
most of the campaign the instrument zeros adequately account for the contributions from 
this small leak. Although, there are artifacts evident in the data resulting from the 
interpolation routine used to define the background signal.  

Mass scale calibrations were performed using TOFWERK 2.5 using standard peak 
fitting procedure. These calibrations used H318O+ (m/z 21.022086), NO+ (m/z 
29.997440), H318O(H2O)+ (m/z 39.032651), C3H7O+ (m/z 59.049141), C6H4Cl3+ (m/z 
280.937310) and C6H437ClCl2+ (m/z 182.934909). Accuracy of the peak fitting for the 
calibrated ions was generally better than 40 ppm and resulted in a resolution (m/dm) of 
3000 for the high mass ions. Elemental ion compositions were deduced with the aid of 
the TOFWARE program, which performed the peak extractions for the high resolution 
time series.  

Ion intensities produced for the high resolution peak extraction process were 
converted to normalized counts per second (ncps) by dividing the measured ion intensity 
by the sum of the H3O+ and H3O+(H2O) reagent ions as follows: 

IMH+ (ncps) =1e6* IMH+/(IH318O+*500 + IH318O+(H2O)*250) 
The resulting normalized signals have their background signals (zeros) evaluated and 

averaged for each zero period. These backgrounds are then interpolated back onto the 
original time base and subtracted from the measured ambient signals. These background 
corrected signals can be converted to mixing ratios by application of the appropriate 
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sensitivity factor. By convention PTR-MS sensitivity factors are expressed as ncps/ppb so 
the conversion to ppb is accomplished by dividing the background corrected signals 
(ncps) by the sensitivity factor (ncps/ppb). Sensitivity factors can be determined either 
directly through calibration using standards or estimated from calculated proton transfer 
reaction constants.  

Sensitivity factors for a selected set of compounds were evaluated from calibrations 
that were performed periodically throughout the campaign by overblowing the inlet with 
a dynamically diluted calibration standard. All but one of calibrations was performed 
using a multicomponent calibration standard containing: methanol, acetonitrile, 
acetaldehyde, acetone, benzene, toluene, p-xylene and 1,2,4-trimethylbenzene. A single 
calibration was performed using a standard borrowed from the University of Houston that 
contained: methanol, acetonitrile, acetaldehyde, acetone, dimethylsulfide, isoprene, 
methacrolein, methylvinylketone, methylethylketone, benzene, toluene and camphene. 
For all of the components except methanol that were common to both standards the 
calibration factors differed by less than 10%. For methanol the sensitivity factors differed 
by 18%. A total of 11 calibrations were performed during the campaign and the results of 
those measurements are reported in Table S4. 
Table S4. PTR-ToF-MS Calibration tank species and sensitivity factors. 

Compound Measured 
Sensitivity 
(ncps/ppb) 

aMeasured 
Sensitivity 
(std dev) 

Branching 
Fraction 

bk 
(10-9 
cm3/s) 

Calculated 
Sensitivity 
(ncps/ppb) 

Methanol 6.38 1.23 1 2.14 9.78 
Acetonitrile 13.29 1.73 1 3.82 17.46 
Acetaldehyde 10.91 1.62 1 3.02 13.81 
Acetone 14.35 2.13 1 3.21 14.68 
Dimethylsulfide 7.77  1 2.10 9.60 
Isoprene 4.08  0.475 1.95 8.92 
cMACR+MVK 9.76  1 c3.15 14.40 
Methylethylketone 12.65  1 3.14 14.36 
Benzene 9.06 1.39 1 1.93 8.82 
Toluene 10.49 1.67 1 2.08 9.51 
p-xylene 11.12 1.79 1 2.26 10.33 
d1,2,4-TMB 11.41 2.10 1 2.40 10.97 
Camphene 5.32  0.51 2.46 11.25 

a – standard deviations are not reported for compounds with only a single determination 
b – values from Table S1 at E/N 140 Td from Cappellin et al. Table S1 [Cappellin et al., 

2012] 
c – weighted average for methacrolein(MACR) and methylvinylketone(MVK) 
d – trimethylbenzene (TMB) 

 
The reported concentrations for named species that have measured sensitivity factors 

are determined using the measured sensitivity factors reported in Table S4. It is 
recognized (see discussion below) that several of the measured sensitivity factors appear 
to be in error, but without additional information to corroborate that there were problems 
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with the calibration or that the concentrations within the calibration standard are 
incorrect. All other concentrations reported were computed using 10 ncps/ppb as the 
sensitivity factor. This value is reasonable approximation for most compounds that do not 
extensively fragment upon ionization with this instrument. For compounds that do not 
fragment, one can using the information presented below, to estimate more appropriate 
sensitivity factors from computed proton reaction rate constants. Fragmentation results in 
lower apparent sensitivity due to the loss of signal for the protonated molecule. It is 
difficult to estimate the extent of fragmentation and no attempt has been made to account 
for this directly.  

It is well known that the extent of ionization of molecules within the drift tube 
reaction chamber is controlled by the amount of reagent ion, the concentration of the 
substrate, the proton transfer reaction rate constant and drift time of reagent ion. It is 
straight forward to calculate the sensitivity (ncps/ppb) expected: 

Sensitivity (ncps/ppb) = k*t*number_density*1e-9*1e6 
Where k = reaction rate constant, t = drift time (100 microseconds), the number 

density (molecules/ml) is computed via the ideal gas law using the drift tube pressure and 
temperature, 1e-9 converts to ppb and 1e6 represents 1 million H3O+ reagent ions. Table 
S5 lists the calculated sensitivity for each of components that were calibrated. What is 
unknown and instrument specific is the extraction and detection efficiency of the ions, 
but is typically dependent on the ions mass. It is typical to plot the ratio of the measured 
sensitivity to the calculated sensitivity versus ion mass and then fit the data to an 
expression. Effectively this provides a transmission curve, which accounts for all of mass 
dependent ion loss processes. Figure S10 shows a plot of this data for all of the calibrated 
species. It is important to recognize that the calculated sensitivity assumes all of response 
is detected as a single ion and the measured sensitivity must be corrected for 
fragmentation and the natural 13C isotopic abundance. The transmission curve allows one 
to compute a “measured” (instrument specific) sensitivity factor for any compound for 
which the proton transfer reaction rate constant is known or can be calculated. These 
instrument specific sensitivity factors then are corrected to account for fragmentation and 
natural 13C isotopic abundance.  
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Figure S10. Transmission curve for the PTR-ToF-MS used in SAFS.  

PTR-ToF Ion Identifications 

For a discussion of the challenges of ion identification and interpretation, particularly 
as it relates to isoprene, see the Methods section. 

The majority of the ion identifications are taken from Yuan et al. [2017], which 
provides a comprehensive review of both the identification and potential chemical 
interferences that can impact quantification.  All of that detail is appropriate for the 
current study and is not repeated here.  Additional details specific to the SAFS 
interpretation are included and referenced. 

• m/z 33  – CH5O+ – methanol 

• m/z 41 – C3H5+  There are multiple sources contributing to this ion.  A significant 
fraction of the isoprene signal is detected at this mass.  During high isoprene loadings 
the majority of the C3H5+ signal is attributable to isoprene and is accounted for in the 
isoprene quantification.  The residual C3H5+ most likely originates from the 
fragmentation of larger unidentified hydrocarbons. 
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• m/z 42 – C2H4N+ – acetonitrile 

• m/z 43 – C2H3O+ This ion appears to be almost exclusively derived from the 
fragmentation of acetic acid.  A correlation plot of C2H3O+ versus C2H5O2+ yields a 
slope of 0.79 and correlation coefficient of 0.9.   

• m/z 43 – C3H7+  This ion represents the sum of propene and fragmentation products 
from larger hydrocarbons.  While it most likely that bulk of the signal originates from 
fragmentation of larger hydrocarbons, one can use this signal to place an upper limit 
on propene. 

• m/z 45 – C2H5O+ – acetaldehyde 

• m/z 46 – NO2+  This signal is attributed to a collection of organic nitrates. It is 
important to recognize that the NO2+ signal reported is from an atmospherically 
generated product and not from residual background signal generated from the hollow 
cathode ion source.   Organic nitrates are known to produce a NO2+ fragment in the 
PTR-MS (Duncianu et al. 2017, Hansel et al. 2000). 

• m/z 47 – CH3O2+ – formic Acid 

• m/z 47 – C2H7O+  This ion is assumed to be ethanol.  The reported concentration 
should viewed as a lower limit as ethanol undergoes a significant amount of 
fragmentation within the PTR-MS.   

• m/z 54 – C3H4N+ – acrylonitrile 

• m/z 57 – C3H5O+ – acrolein 

• m/z 57 – C4H9+  This ion represents the sum of butenes and fragmentation products 
from larger hydrocarbons.  While it most likely that bulk of the signal originates from 
fragmentation of larger hydrocarbons, one can use this signal to place an upper limit 
on butenes. 

• m/z 59 – C3H7O+ – acetone 

• m/z 61 – C2H5O2+ – This ion represents the sum of acetic acid and glycolaldehyde.   

• m/z 63 – C2H7S+ – dimethylsulfide 

• m/z 67 – C5H7+ – This ion signal is predominately from the fragmentation of 
isoprene. 

• m/z 69 – C4H5O+ – furan 
m/z 69 – C5H9+ – Isoprene is the dominate contributor during the daytime, but other 
species such as methylbutenol (MBO) can contribute.  Comparison with the GC-ToF-
MS indicated reasonable agreement with the PTR-ToF-MS measurements being 13% 
higher.   

• m/z 71 – C4H7O+ – Sum of methylacrolein and methylvinylketone produced from the 
photooxidation of isoprene. 

• m/z 71 – C5H11+  This ion represents the sum of pentenes and fragmentation products 
from larger hydrocarbons.  While it most likely that bulk of the signal originates from 
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fragmentation of larger hydrocarbons, one can use this signal to place an upper limit 
on pentenes. 

• m/z 73 – C3H5O2+ – Methylgyloxal is considered to be the most logical assignment 
for this ion.  Bregonzio-Rozier et al. 2016 identified methylglyoxal as significant 
component of isoprene oxidation in a chamber experiment. 

• m/z 73 – C4H9O+ – methylethylketone 

• m/z 75 – C3H5O2+ – hydroxyacetone 

• m/z 77 – C2H5O3+ – fragment ion of peroxyacetyl nitrate (PAN).  

• m/z 79 – C6H7+ – benzene 

• m/z 81 – C6H9+ – This ion is primarily a fragment ion of the monoterpenes.  In most 
cases the carbon presence in this ion signal is accounted for in the quantification of 
the monoterpenes. There are times when this ion is significantly enhanced in the 
absence of any monoterpene signal.  This source has not been identified. 

• m/z 83 C5H7O+ This ion is thought to be methylfuran, which is a known oxidation 
product of isoprene. 

• m/z 83 C6H11+  Most PTR-MS literature identifies this ion as methylcyclopentane.  
Corresponding measurements of methylcyclopentane made by a GC-MS indicate no 
correlation between the C6H11+ ion signal and cyclopentane while the mobile lab 
was at Floresville.   Based on this result we conclude that C6H11+ is not 
methylcyclopentane.   

• m/z 85 C5H9O+ No identification has been made.   

• m/z 85 C6H13+ This ion represents the parent ion of the C6-alkenes and is also a 
fragment ion of larger hydrocarbons.   

• m/z 87 C4H7O2+ Bregonzio-Rozier et al. 2016 have identified this ion as a component 
of isoprene oxidation in a chamber experiment.   

• m/z 87 C5H11O+ This ion is tentatively identified as methylbutenol which is emitted 
from conifers in an analogous pathway to that of isoprene.  It is only emitted during 
the daytime. 

• m/z 89 C4H9O2+ No identification has been made. 

• m/z 93 C7H9+ – Toluene 

• m/z 95 C7H11+ This ion appears to be predominately as a fragment from the 
monoterpenes, but there are other sources that contribute. 

• m/z 97 C5H5O2+ No identification has been made. 

• m/z 97 C6H9O+ No identification has been made. 

• m/z 97 C7H13+ No identification has been made. 

• m/z 99 C4H3O3+ No identification has been made. 
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• m/z 99 C5H7O2+ Bregonzio-Rozier et al. 2016 identified this ion as a component of 
isoprene oxidation in a chamber experiment. 

• m/z 99 C6H11O+ No identification has been made. 

• m/z 101 C5H9O2+ No identification has been made. 

• m/z 101 C6H13O+ No identification has been made. 

• m/z 103 C5H11O2+ No identification has been made. 

• m/z 104 C8H9+ – Styrene 

• m/z 107 C7H7O+ – Benzaldehyde 

• m/z 107 C8H11+ – Sum of the C8Benzenes which includes ethylbenzene plus the three 
xylene isomers.   

• m/z 113 C5H5O3+ Bregonzio-Rozier et al. 2016 identified this ion as a component of 
isoprene oxidation in a chamber experiment. 

• m/z 115 C6H11O2+ No identification has been made. 

• m/z 117 CCl3+ This is the fragment ion of carbon tetrachloride and most likely 
produced via O2+ as the proton affinity of CCl4 is less than that of water. 

• m/z 119 C9H11+ No identification has been made. 

• m/z 121 C8H9O+ This could be a tolualdehyde but the overall signal is very weak and 
no identification has been made. 

• m/z 121 C9H13+ Sum of the C9Benzenes which includes a total of 8 isomers 
representing 3-trimethylbenzenes, 3-ethyltoluenes and 2-propylbenzenes. 

• m/z 123 C9H15+ No identification has been made. 

• m/z 127 C8H15O+ No identification has been made. 

• m/z 129 C10H9+ – naphthalene 

• m/z 129 C7H13O2+ No identification has been made. 

• m/z 131 C10H11+ No identification has been made. 

• m/z 135 C10H15+ Sum of the C10Benzenes.  

• m/z 137 C10H17+ Sum of the monoterpenes.   

• m/z 139 C9H15O+ This ion has been observed as an emission product from Ponderosa 
pines.  It temporal pattern is consistent with it being a biogenic emission from 
conifers. 

• m/z 149 C11H17+ Sum of the C11Benzenes. 

• m/z 153 C10H17O+ This is most likely a terpenoid compound coming from conifers. 

• m/z 205 C15H25+ This is parent ion for the sesquiterpenes.  These compounds undergo 
a significant amount of fragmentation so the concentration represents a lower limit. 
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I-CIMS Operation and Data Description 

The iodide Chemical Ionization Mass Spectrometer (I-CIMS) relies on VOC 
ionization by either creating an I—VOC adduct, or by charge exchange and/or 
fragmentation in reaction with an I- or I-(H2O)n cluster. Once ionized the ions are injected 
into a high-resolution time-of-flight (TOF) mass spectrometer, which provides mass-to-
charge resolution in excess of 4000:1. The mass spectrometer during the SAFS field 
campaign recorded one-second mass spectra over the course of the field campaign. To 
speed up analysis, the fast data was averaged to 20-seconds before high-resolution fitting 
of the mass spectra. Mass spectral fitting consists of calibrating the mass spectral m/z 
axis based upon a set of common, intense species easily identified in the mass spectrum 
over the course of the campaign. The stability of that mass calibration is a reflection of 
instrument stability and drift. The resulting uncertainty in mass calibrated peak positions 
from the SAFS campaign was <5 parts per million (i.e. the peak position is established to 
better than 5 parts in 1 million).  

After mass calibration, peaks can be identified and fit, allowing for conversion to 
mass signal intensity. As shown below, there can be many overlapping peaks, requiring 
fitting of the peak shapes to multiple contributions. In this case, we identified 2446 
potential mass peaks in the range of 30-700 amu. We refined this peak list by only 
focusing on peaks that have responded to the application of zero air to the instrument 
inlet. The resulting list is used in the PMF analysis of the data, and chemical 
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interpretation. The peak intensities are corrected for zero offset, and calibrated to known 
concentrations where appropriate. 

 
Figure S11. I-CIMS massspectrum and high-resolution fit 

 
 

 

Hysplit and Land Use Overlap Integrals 

Overlap integrals of a Hysplit back-trajectory with Texans land cover types, in 
arbitrary units. 

An overlap analysis was done using land cover data from the Texas Parks & Wildlife 
Department [Elliott et al., 2014] and results from Hysplit footprint simulations performed 
in this study. A map of the spatial domain of these overlaps including 5 different 



 92 

categories is shown below. The oil and gas play type was allowed to overlap with the 
other 4 land cover types. A detailed explanation of this procedure is produced in the 
Methods section of this final report.  

 
Figure S12. Oil and gas mapping information (purple) is shown gridded onto a 0.025 x 
0.025 decimal degree grid overlaying the ecological and land use data. The Eagle Ford 
Shale Play (center left) is shown along with some of the Barnett (top left) and 
Haynesville (top right) plays. The city bounds of San Antonio are outlined in black. 
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Appendix B: Audits of Data Quality – 10% 

Required 
A data quality audit on 10 % of the generated high-resolution time-series. The chosen 

data will include traces from each of the three instruments undergoing high-resolution 
analysis, and will include the entire time period of interest. This choice (complete time 
coverage, 10% data series coverage) is preferred over the alternate (10% time coverage, 
all data series) because any problems found in the data at a given time are likely to be 
present at the same time in other data from that instrument. This choice results in a better 
chance of finding errors.  

The data audit will be done by plotting the selected time series along with pre-
existing data for diagnostic tracers like carbon monoxide, and, if available, TCEQ data 
for the species of interest. The following problems will be identified, flagged and 
communicated to the scientist responsible for the data for correction: zeroes or calibration 
periods present; glitches in the data showing unphysical mixing ratios; bias in the data 
versus TCEQ reference (if available); and others.  

PTR-ToF 
A total of 68 PTR-ToF data series were produced. They are listed in Appendix A. 

They include both chemical species which were originally produced in low-resolution 
format for the 2017 dataset, and additional species identified during this 2019 project. An 
overview of these traces is shown in the figure below. This figure is used to qualitatively 
assess data coverage and the presence of glitches or other major issues. Coverage is 
excellent, with only a few gaps. 
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Figure S13. Overview of PTR-ToF dataset showing data coverage. The vertical axes are 
scaled to show baseline variations. The graph is shaded according to the three locations 
visited during SAFS.  

The following data quality indicators were assessed 

• Zeroes or calibration periods present:  None present 
• Glitches in the data showing unphysical mixing ratios:  None present 
• Biases in data versus reference (if available):  See below 
• Other quality notes:  

o Baseline wander for small periods of time for some tracers. See below. 
o Ensured large data gaps in fast data were set to NaN in final 1-minute 

average data. 

A selection of the produced PTR-ToF dataset was compared with low-resolution 
results produced from the original 2017 project. Only those species which were resolved 
in the 2017 project were available for comparison; this cannot be done with the newly 
identified tracers. Differences in calibration factors were noted, with toluene as an 
example below. These differences were flagged and set off a review of the full PTR-ToF 
dataset. We identified major changes in the calibration factors after high-resolution 
fitting, which had not been incorporated into the final dataset. Updated data using 
calibration factors appropriate to the high-resolution fits was produced as a result of this 
QA procedure.  
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Figure S14. Difference in calibration of toluene data in 2019 versus 2017 dataset.  

Occasionally, the PTR-ToF high-resolution data shows baseline deviations that are 
unphysical (i.e. fall below zero). An example is shown below.  

 
Figure S15. Example of baseline wander in high-resolution data (red) versus 2017 low-
resolution dataset.  

I-CIMS 

The I-CIMS data produced are listed in Appendix A. They include both chemical 
species which were produced in low-resolution format for the 2017 dataset, and 
additional species identified during this 2019 project.  
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The following data quality indicators were assessed 

• Zeroes or calibration periods present:  None present 
• Glitches in the data showing unphysical mixing ratios:  None present 
• Biases in data versus reference (if available):  See below 
• Other quality notes: 

o Updated results fill in missing periods compared to 2017 results 
o Integration problem initially yielded zero mixing ratios in Floresville 

(see below). 
o Ensured large data gaps in fast data were set to NaN in final 1-minute 

average data. 

In general the high-resolution I-CIMS results show greater coverage compared to 
2017 versions of the data. An example is shown below for IClNO2, where the original 
data ended on 5/29, but updated data covered up until the end of the campaign on 5/31.  

 
Figure S16. Previous data (green) versus high-resolution data (red) produced as part of 
this campaign. The IClNO2 data trace is shown here. 

Furthermore, the high-resolution fit data is better able to capture certain species 
during periods which yielded unphysical in the previous data.  
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Figure S17. Previous data (green) versus high-resolution data (red) produced as part of 
this campaign. The IClNO2 data trace is shown here. Previous data showed unphysical 
results at some times, which are not present in the current dataset. 
 

However, the high-resolution I-CIMS dataset showed a major problem which was 
identified as part of this data quality audit: There is a period in time in Floresville, where 
the fit is yielding exactly zero. This is shown in Figure S18 for IClNO2 but is true for all 
I-CIMS species as shown in Figure S19. This issue has been corrected in the final data.  

 
Figure S18. Highlight showing high-resolution fit problem between 5/18 and 5/21. The 
black and green traces correspond to IClNO2 data produced as part of the 2017 project. 
The pink trace shows the initial attempt at a high-resolution fit. 
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Figure S19. The high-resolution fit problem is apparent for all I-CIMS species in the 
original high-resolution fit.  

GC-ToF 
A total of 18 GC-ToF data series were produced. They are listed in Appendix A. 

They include chemical species which were originally produced for the 2017 dataset, but 
include additional time periods analyzed as part of this 2019 project. An overview of 
these traces is shown in the figure below. This figure is used to qualitatively assess data 
coverage and the presence of glitches or other major issues. Coverage for this data series 
has some gaps; the instrument in question was a first-of-its-kind prototype instrument at 
the time of deployment. Data reported in the latter half of the campaign (dotted lines) are 
in estimated response only.  

 
Figure S20. Overview of GC-ToF dataset showing data coverage. The graph is shaded 
according to the three locations visited during SAFS. GC-ToF data reported in Corpus 
Christi State Park have been reported in counts; the rest of the time series is in calibrated 
parts-per-billion. 

The following data quality indicators were assessed 

• Zeroes or calibration periods present:  None present 
• Glitches in the data showing unphysical mixing ratios:  None present 
• Biases in data versus reference (if available):  See below 
• Other quality notes: 
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o Updated results fill in missing periods compared to 2017 results 
o Ensured large data gaps in fast data were set to NaN in final 1-minute 

average data. 



 100 

Appendix C: Ion Lists 
 

PTR-ToF-MS Ion Identification 

The table below provides a listing of the ions that were identified and quantified using 
the PTR-ToF-MS instrument during the 2017 SAFS. Concentrations were derived for 
each species (ion) using the sensitivity factors listed. Sensitivity factors that were derived 
from calibration experiments (values not equal to 10) and account for both the inherent 
sensitivity (proton transfer reaction rate) and any loss in the MH+ signal intensity due to 
fragmentation. Mathematically Smeasured = Stheory*Branching Fraction. Uncalibrated 
species have been assigned a Smeasured = 10 ncps/ppb. Concentrations for uncalibrated 
species can be improved by applying the appropriate sensitivity factor by multiplying the 
reported concentrations by the ratio of (10/Scalculated). Mixing ratio averages reflect the 
average of over the entire campaign. The note section provides tentative identifications, 
which are discussed in greater detail in the following section. 

 

Table S5. PTR-ToF-MS HR Ion Identification List 
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Factor-Specific Signature Ions from I- CIMS 

SAFS_ionName SAFS_mz 
Isoprene 
C5H7NO4I- 271.9425354 
C4H7NO5I- 275.937439 
C5H7NO5I- 287.937439 
C4H7NO6I- 291.932373 
C5H11NO5I- 291.96875 
C5H7NO6I- 303.932373 
C5H9NO6I- 305.947998 
C5H7NO7I- 319.9272766 
C5H9NO7I- 321.9429321 
C5H11NO7I- 323.9585876 
C5H7NO8I- 335.9221802 
C5H9NO8I- 337.9378357 
C6H11NO8I- 351.9534912 
C5H10N2O8I- 352.9487305 
C5H9NO9I- 353.9327393 

 

SAFS_ionName SAFS_mz 
Alpha Pinene 
C10H15NO5I- 356 
C8H11NO7I- 359.9586 
C8H13NO7I- 361.9742 
C10H15NO6I- 371.995 
C9H13NO7I- 373.9742 
C10H17NO6I- 374.0106 
C8H11NO8I- 375.9535 
C9H15NO7I- 375.9899 
C10H19NO6I- 376.0262 
C10H15NO7I- 387.9899 
C9H13NO8I- 389.9691 
C10H17NO7I- 390.0055 
C8H11NO9I- 391.9484 
C10H15NO8I- 403.9848 
C10H15NO9I- 419.9797 
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SAFS_ionName SAFS_mz 
Biomass Burning 
IC6H6O2- 236.9418 
IC6H5NO3- 265.932 
IC9H10O2- 276.9731 
IC8H8O3- 278.9524 
IC9H12O2- 278.9887 
IC7H7NO3- 279.9476 
IC6H5NO4- 281.9269 
IC6H10O5- 288.9579 
IC10H12O2- 290.9887 
IC9H10O3- 292.968 
IC10H10O3- 304.968 
IC10H12O3- 306.9837 
IC10H14O3- 308.9993 
IC10H14O3- 308.9993 
IC6H4N2O5- 310.9171 
IC17H20O4- 415.0412 
IC18H22O4- 429.0568 
IC20H24O5- 471.0674 
IC20H22O6- 485.0467 
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SAFS_ionName SAFS_mz 
1,3,5 Trimethyl Benzene 
IC2H2O3- 200.9054 
C2H4O3I- 202.9211 
203.914337 203.9143 
203.973007 203.973 
C9H18NO4- 204.1241 
C10H22NO3- 204.1605 
C3H7INO2- 215.9527 
C2H2O4I- 216.9003 
IC2H4O4- 218.916 
C3H2IO4- 228.9003 
IC4H6O3- 228.9367 
IC3H4O4- 230.916 
C2H3INO4- 231.9112 
IC3H6O4- 232.9316 
IC4H10O3- 232.968 
IC6H8O2- 238.9575 
IC5H6O3- 240.9367 
241.899384 241.8994 
IC4H4O4- 242.916 
C5H8O3I- 242.9524 
C6H12O2I- 242.9888 
C4H6O4I- 244.9316 
IC4H8O4- 246.9473 
C5H2IO4- 252.9003 
IC6H6O3- 252.9367 
C6H9INO2- 253.9684 
IC5H4O4- 254.916 
C16H34NO- 256.2646 
C4H2IO5- 256.8952 
C5H8O4I- 258.9473 
C14H14NO4- 260.0928 
IC5H10O4- 260.9629 
IC6H2O4- 264.9003 
IC6H6O4- 268.9316 
IC6H8O4- 270.9473 
C4H2IO6- 272.8902 
IC5H6O5- 272.9265 
C4H4IO6- 274.9058 
C5H8IO5- 274.9422 
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C5H8IO5- 274.9422 
IC9H10O2- 276.9731 
IC8H8O3- 278.9524 
IC9H12O2- 278.9887 
C13H13O7- 281.0667 
IC6H5NO4- 281.9269 
IC6H4O5- 282.9109 
IC7H8O4- 282.9473 
IC8H12O3- 282.9837 
IC6H6O5- 284.9265 
C7H10O4I- 284.9629 
IC8H14O3- 284.9993 
C5H4IO6- 286.9058 
IC6H8O5- 286.9422 
C8H3INO3- 287.9163 
C5H6O6I- 288.9214 
IC6H10O5- 288.9579 
C5H8IO6- 290.9371 
IC10H12O2- 290.9887 
IC9H11NO2- 291.984 
C5H10IO6- 292.9528 
IC9H10O3- 292.968 
C7H5INO4- 293.9269 
C19H20NO2- 294.15 
C7H4IO5- 294.9109 
IC9H12O3- 294.9837 
IC10H16O2- 295.0201 
C6H4INO5- 296.914 
IC8H10O4- 296.9629 
C6H4IO6- 298.9058 
C8H12IO4- 298.9786 
C9H16IO3- 299.015 
C6H6IO6- 300.9214 
IC7H10O5- 300.9579 
C7H12IO5- 302.9735 
C5H6O7I- 304.9164 
IC10H10O3- 304.968 
C8H5INO4- 305.9269 
C9H9INO3- 305.9633 
IC9H8O4- 306.9473 
C9H11INO3- 307.9789 
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C13H26NO7- 308.1715 
IC6H4N2O5- 310.9171 
IC8H8O5- 310.9422 
IC9H12O4- 310.9786 
C10H16O3I- 311.015 
IC7H7NO5- 311.9374 
IC9H15NO3- 312.0102 
IC8H10O5- 312.9579 
IC9H14O4- 312.9942 
IC10H18O3- 313.0306 
C7H8IO6- 314.9371 
C7H8IO6- 314.9371 
IC8H12O5- 314.9735 
C8H15INO4- 316.0051 
C6H6IO7- 316.9164 
IC7H10O6- 316.9528 
C9H4IO5- 318.9109 
320.88736 320.8874 
C8H18IO5- 321.0204 
C8H6IO6- 324.9214 
C10H14IO4- 324.9942 
325.882904 325.8829 
C8H9INO5- 325.9531 
C9H13INO4- 325.9895 
C11H21INO2- 326.0623 
C11H4IO4- 326.916 
C9H12IO5- 326.9735 
328.168549 328.1685 
C7H6IO7- 328.9164 
IC8H10O6- 328.9528 
C9H14IO5- 328.9891 
C9H17INO4- 330.0208 
IC8H12O6- 330.9684 
C9H16IO5- 331.0048 
C6H7INO7- 331.9273 
C7H11INO6- 331.9637 
C6H6IO8- 332.9113 
IC7H10O7- 332.9477 
IC7H10O7- 332.9477 
C9H4IO6- 334.9058 
IC11H12O4- 334.9786 
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IC12H22O3- 341.0619 
C11H4IO5- 342.9109 
C9H12IO6- 342.9684 
C13H28IO2- 343.114 
C9H14IO6- 344.9841 
C7H8O8I- 346.9269 
C7H8O8I- 346.9269 
C11H8IO5- 346.9422 
C8H12O7I- 346.9633 
C6H7NO8I- 347.9222 
C12H15INO3- 348.0102 
C10H6IO6- 348.9214 
C9H13NO6I- 357.9793 
C8H11NO7I- 359.9586 
C9H15NO6I- 359.995 
370.964508 370.9645 
C9H13NO7I- 373.9742 
C9H12O8I- 374.9583 
C9H12O8I- 374.9583 
C8H11NO8I- 375.9535 
376.97467 376.9747 
388.882935 388.8829 
C9H13NO8I- 389.9691 
C10H17NO7I- 390.0055 
390.092987 390.093 
C8H11NO9I- 391.9484 
400.911438 400.9114 
404.078888 404.0789 
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Appendix D: Hysplit Trajectories 
The full set of hourly back trajectory figures is available in the dataset deliverables 

for this project. They may also be viewed for a limited time here:  

https://herndon.homeunix.net/owncloud/index.php/s/5DeukFZ4CcbEHUM 
The calculations have also been done for the UTSA location for the entire campaign, 

in order to support other research groups doing stationary measurements at this location. 
A movie of these UTSA back-trajectories can be viewed here:  

https://herndon.homeunix.net/owncloud/index.php/s/peG6fXDR9FQtx5r 
 

 


